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Summary

This report discusses the results of an 8-month inter-disciplinary research project between Virginia
Polytechnic Institute and State University and Aerophysics Inc. The research task objectives are to
study how Coulomb propulsion can be used to create reconfigurable distributed spacecraft formation
concepts. Both formation maintenance and deployment charge and voltage levels are of interest, as
well as the required reconfiguration times to change the formation size. A further task is to study
the space plasma environment at low to high Earth orbit altitudes. Associated to this task is the
study of the expected differential disturbance levels that Coulomb spacecraft will experience at a
range of orbit altitudes. Using the results of the plasma environment study, expected spacecraft
voltages are to be computed to compensate for conservative orbital perturbation estimates. Another
objective is to study mechanisms to both measure the local plasma charge level, and control the
spacecraft charge relative to this plasma charge level. The final task is to perform a comparison
study of the Coulomb propulsion concept to other high-efficiency propulsion concepts.

The technical problems associated with Coulomb formation flying is determining the required
charge level to achieve missions tasks such as deployment, orbit maintenance, formation reconfigu-
ration, or docking maneuvers. Previously flown missions in the 70s have demonstrated that kilovolt
level of charges are feasible. In this study we are assuming that this charge level can be safely in-
creased to multiple hundreds of kilovolts using modern materials and manufacturing methods. A
very challenging aspect of Coulomb thrusting based control is that these forces only act along the
line of sight vector between spacecraft. As a result, the relative motion dynamics are very nonlinear
and coupled, and can yield surprising, unexpected results. The current CLUSTERS mission uses
Langmuir probes up to 25 meters in length to measure the local space plasma potential level very
accurately. Their goal is to precisely zero the spacecraft potential relative to this plasma. With
the Coulomb spacecraft control concept the craft are flying 10–100 meters apart, making such large
boom impractical. Instead, the technical challenge is to find other methods to sense and servo the
spacecraft charge. The Coulomb thrusting concept has distinctly different requirements than the
currently flying charge control method. Thus, sensing methods must be investigated which achieve
the required spacecraft charge control without adding impractical components.

The general methodology is to conduct literature reviews of the space plasma environment and
charge feedback control technology, create open-loop numerical simulation studies to estimate re-
quired charge levels, write custom numerical simulations to investigate particular mission scenarios,
as well as perform analytical research to investigate the closed-loop reconfiguration control of a 2-
craft formation in high Earth orbit. No laboratory experiments are conducted during this study.

The important findings of the plasma environment study are that the plasma Debye length is on
the order of 0.01–0.03 meters at low Earth orbit. This strong electric field masking parameter makes
the Coulomb thrusting concept infeasible at this low altitude with a cold, dense space plasma. At
higher altitudes the Van Allen radiation belts are of concern. The data here shows that the Debye
length is still only 0.03–0.26 meters, too small for practical use with Coulomb thrusting. Beyond
5-6 Earth radii outward to geostationary altitudes the Debye length is found to vary between 100–
1000 meters. The rest of the research focused on mission flying in high Earth orbits outside of
the Van Allen radiation belts. At these altitude the dominant differential orbital perturbation is
differential solar radiation pressure. This is true for spacecraft separation distances outward to 1000
meters. Conservative estimates show that flying spacecraft about 20 meters apart at GEO would
require multiple kilovolts to compensate, assuming a 50kg craft with 0.5 meter radius. Further,
considering the Earth magnetic field, for the induced Lorentz force to be comparable to differential
solar radiation pressure, the craft would have to charge up to multiple mega-volt levels. The
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expected open-loop maintenance charge level studies are conducted for a classical formation of
spacecraft, as well as a gluon-deputy formation concept. Here the gluon craft size is enlarged to be
able to carry a higher charge level. Flying 20–30 meters apart, these voltages are around 10’s of
kilovolt.

A study is performed to investigate voltage requirements to perform static Coulomb structures.
Here the electrostatic force cancel the relative orbital acceleration to yield an invariant formation
shape as seen by the rotating center of mass frame. An important finding is that it is possible to
construct virtual structures where sensor craft are in a desired geometry (e.g. distributed radar
interferometry), while other charged craft in this virtual structure are in a support role to help
maintain the shape.

The important findings of the deployment study include numerical simulations of deputy craft
being released from a mother craft using rest-to-rest or rest-to-motion scenarios. The simulations
use closed-loop charge control to achieve the final position and/or velocities. Using essentially no
fuel, this study shows that deputy craft can be relocated dozens of meters using 10’s of kilovolt
levels of charge. Maneuver times are typically several hours.

Another study investigated the required maximum charge level to change the separation distance
of two inertially floating spacecraft within a specified amount of time. An important result of
this research was finding a robust numerical optimization method to find such solutions. The
inverse square drop off of the electrostatic field strength causes strong sensitivity issues with larger
separation distance. Homotopy methods were employed to sweep through a range of separation
distance, travel times, and plasma Debye lengths. To reconfigure 2 craft from 2 to 25 meters in a
few hours requires 1–10’s of kilovolts.

A related study investigates a closed-loop charge control of a 2-craft nadir pointing formation at
GEO. Here the gravity gradient torque acting on the system is exploited to stabilize the formation
attitude while changing the length. Important findings include analytical predictions of fast the
craft can increase or decrease their separation distance while still guaranteeing linear stability of
the non-autonomous system. Maneuver times are typically around 1–2 days to allow the weak local
gravity gradient to stabilize the in-orbit-plane formation attitude.

The charge control study found a promising method servo the spacecraft voltage level. An array
of small differential voltage probes are added to the vehicle which can measure the electric potential.
Having a model of the vehicle geometry and materials, it is then possible to estimate the total vehicle
potential. Further, to achieve this potential, a simple ion or electron gun is used. An important
conclusion is that this process is insensitive to plasma potential variations. The local variations of
space plasma between spacecraft is minimal due to the small separation distances. Thus, it is only
necessary to control the spacecraft charge relative to the plasma. This is a substantial simplification
to the charge control process on the CLUSTERS mission.

Finally, the mass and power comparison study shows that the Coulomb thrusting concept is
orders of magnitudes more efficient than ion-engine technologies, and often requires as little as 1
Watt of power or less. In fact, the total electrical power requirement for Coulomb thrusting are
determined not by the propulsion method needs itself, but rather by the power requirements of the
supporting electronics and thermal control.

The implications for further research are that several exciting new mission concepts are deter-
mined. The virtual structure concept can be used to deploy a series of small probe satellites about a
non-collaborative satellite to monitor its activities. Sensor probes could places near the target craft
without interfering with it. The probe location can be actively controlled using the other charged
spacecraft. The mother craft is assumed to have its own station keeping capability. Further, the
Coulomb thrusting concept can be used to ploy swarms of pico-satellites. Compared to mechani-
cal release mechanisms, the electrostatic force can control and correct the release trajectory up to
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several meters away.
A very promising use of Coulomb thrusting is docking and proximity flying operations. Docking

in particular is a very challenging operation that requires significant fuel amounts to perform the
many small orbit corrections. Further, exhaust plume impingement is a major concern. Using
a Coulomb force to control the relative motion avoids the plume impingement issue, while the
required fuel requirements would be near zero. Using a nadir-pointing docking approach, the
gravity gradient could be exploited. Here the Coulomb force stabilizes both the separation distance
and the in-plane attitude angle. Out-of-plane motion would be compensated with conventional
thrusters. This scenario would provide an elegant docking approach solution which uses minimal
amounts of fuel and avoids the plume impingement issues.
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Chapter 1

Introduction

This report discusses the results of an 8-
month inter-disciplinary research project be-
tween Virginia Polytechnic Institute and State
University and Aerophysics Inc. The project
goal is to investigate using Coulomb propul-
sion to control the relative motion of spacecraft
in a variety of mission scenarios. The novel
Coulomb thrusting concept exploits space-
craft charging and the associated inter-craft
Coulomb forces. By controlling the electrostatic
charge of the spacecraft, small forces are created
cause the craft to attract or repel each other.
Reference 1 shows that such forces can be gen-
erated in an essentially propellantless manner
using often as little as 1 Watt of electric power.
Further, this mode of propulsion is very clean
compared to ion-engines. Preliminary analysis
shows that Coulomb propulsion is up to 1010

times more fuel efficient than state-of-the-art
relative motion propulsion methods, and thus
warrants investigation as a possible alternative
or supplement to conventional propulsion tech-
nologies. Coulomb thrusting avoids the typi-
cal plume impingement problems of ion engines
for tight relative motion control on the order of
dozens of meters.

This technology is significant because it will
facilitate novel mission concepts which are not
possible with conventional technologies. For
example, high-precision, distributed aperture
formation flying missions with applications to
Earth imaging and surveillance are envisioned.
Or, the Coulomb thrusting could be used dur-
ing the deployment phase of a formation or a
swarm of pico-satellites, as well as during for-
mation maintenance periods. Having an ex-

tremely fuel-efficient method to correct the rel-
ative motion prolongs the mission durations,
and allows for the interferometry aperture ra-
dius to be varied on demand. Other forma-
tion concepts investigated include along-track
and nadir-pointing docking concepts, static
Coulomb structures, as well as gluon satellite
concepts. With the latter concept a larger
spacecraft is dedicated to produce a large
charge, and thus reduce the voltage require-
ments of the smaller deputy craft.

Spacecraft flying in Earth orbits are not op-
erating in a pure vacuum, but rather in a
space plasma environment. Here the craft is
exposed to positively charged ions and nega-
tively charged electrons. These charges will
group around a charged object, and thus mask
the spacecraft charge from other neighboring
spacecraft. As a result the presence of a cold,
dense space plasma limits the applicability of
the Coulomb thrusting concept. This study in-
vestigates the expected space plasma environ-
ment from low to high Earth orbits, and deter-
mines in what regions that Coulomb thrusting
appears feasible.

The expected orbit differential perturbations
levels are explored orbit altitudes ranging from
low to high Earth orbits. Conservative worst-
case voltage requirements are computed to com-
pensate for these formation perturbations. This
study provides approximate spacecraft charge
or voltage requirements. To standardize the re-
sults, a common typical deputy craft shape, size
and mass is chosen across all these studies. Re-
quired open-loop maintenance voltage level are
determined for classical spacecraft formations
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of N craft, and for the gluon-deputy concept.
For wide-field-of-view applications, or dur-

ing formation deployment, the relative space-
craft distances can be less than 100 meters.
The primary goal of the virtual structure con-
cept studies is to quantify charging require-
ments as a function of virtual structure forma-
tion and size scaling. For example, to achieve
near-hemisphere Earth coverage at GEO re-
quires spacecraft separation distances of 20-30
meters. Traditional formation flying concepts
require numerous orbit corrections to main-
tain such a tight formation, resulting in a rel-
atively short spacecraft lifetime. While some
type of ion thruster is usually baselined for
such formation-keeping missions, ion propul-
sion exhaust plumes are caustic to other space-
craft sensors and components, and thus ion-
propulsion is ill suited for tight formation flying
missions. The propellantless nature of Coulomb
propulsion avoids these problems.

The deployment study of small Coulomb
craft investigates how the electrostatic force
field can be used to deploy craft, or generally
control their relative motion between vehicles.
Both rest-to-rest and rest-to-speed maneuvers
are considered. In this study the mother craft
is assumed to have its own station keeping ca-
pability, as well as its own attitude control. By
using multiple controlled charge surfaces on the
mother craft, general three-dimensional electro-
static fields are produced to control the relative
motion of the deputy craft. Because these ma-
neuvers involve having the spacecraft fly within
multiple-spacecraft diameters from each other,
a study is performed to evaluate the validity
of the point-charge model of a sphere in a vac-
uum. The actual Coulomb force computed of a
three-dimensional sphere in a plasma environ-
ment and compared to the point-charge model.
The results indicate up to what separation dis-
tance the point-charge modeling assumption is
valid.

Next, the results of a reconfiguration time
study are presented. Here estimates of the re-
quired charge level are sought to change the
nominal separation distance over a set amount
of time. First the craft are assumed to be float-

ing in inertial space. For a given final separation
distance and transfer time, the required maxi-
mum voltages and charge switching times are
computed. An exciting ability of the Coulomb
formations is their ability to be able to change
the size and shape over time. This simplified
study provides a sense of required voltages to
achieve a family of separation distance changes.
The second section discusses in detail how a
2-craft nadir-pointing formation can vary the
nominal separation distance over time. Here
the relative orbital dynamics are exploited to
have the gravity gradient torque acting on the
formation cause the in-plane formation attitude
to be stabilized. Linearizing the time-varying
system, the study illustrate limits on how fast
the craft separation distance can be varied while
still guaranteeing stability.

The next chapter focuses on issues related
to measuring the spacecraft charge or voltage
level. Currently flying spacecraft with charge
control require precise voltage balancing with
the space plasma environment. This involves
adding 25 meter Langmuir probes to the craft
to sense the plasma potential level. These long
probes are very impractical for the Coulomb
spacecraft concept, and the small nominal sep-
aration distances. Instead, alternate methods
are investigate to obtain approximate methods
to level and servo the spacecraft charge level.

The final study compares the Coulomb
thrusting concept to other conventional thrust-
ing technologies. In particular, the total mass
and power required to add this thrusting tech-
nologies are investigated. Also, effective fuel
efficiency values are obtained to control the rel-
ative motion of the craft.
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Chapter 2

Compatibility of Coulomb Thrusting
with Earth Orbital Environment

2.1 Physical Principles

2.1.1 Space Plasma Nomenclature

A plasma is a gaseous mixture of particles
having both positive and negative electrical
charges. The Earth orbital environment is per-
meated by plasma to some extent at all al-
titudes and latitudes. Generally, space plas-
mas consist of electrons and hydrogen ions
(protons), however at lower altitudes the pres-
ence of other atomic ions becomes more preva-
lent. Plasmas are characterized by their den-
sity (electrons/ions per-unit-volume) and the
energy or range of energies of the constituent
particles. Since plasmas are gaseous, the tools
of statistical mechanics are used to specify char-
acteristic average quantities. In particular, if
a plasma environment is in equilibrium it will
obey Maxwellian statistics having a single tem-
perature that provides a representation of the
magnitude and statistical spread in particle en-
ergies. Furthermore, in an equilibrium plasma
the density of positive particles will equal the
density of negative particles in a condition
known as quasineutrality. Thus, in a quasineu-
tral plasma, it is sufficient to specify a single
plasma density n, where n = ne = ni, and
ne/I is the electron/ion density. An equilib-
rium plasma is then completely described by
the value of density, n, and temperature, T ,
with all other macroscopic properties being de-
rived from n and T . Not surprisingly, space
plasmas are rarely in equilibrium. For instance,
in the inner radiation belts the plasma envi-

ronment consists of low energy (cold) dense
plasma produced by particles evaporating from
the upper ionosphere in addition to extremely
high-energy (hot) particles captured from the
solar wind. In such a plasma, it is not pos-
sible to define a single density and tempera-
ture that statistically characterizes the macro-
scopic properties. It is common to approxi-
mate the statistics of complicated non- equi-
librium plasmas using a multi-fluid model. In
a multi-fluid model, the plasma is assumed to
consist of a number of interpenetrating equilib-
rium fluids which, individually, are described
by Maxwellian statistics. The most common
model is the two-temperature model. In this
case, quasineutrality is assumed (equal density
of ions and electrons), however each species is
permitted to have a different temperature. The
temperatures are then denoted by Te for the
electron temperature and Ti for the ion tem-
perature. In a straightforward extension, com-
plicated plasmas can be described by multiple
values of electron and ion density and temper-
ature, denoted by ne1, Te1, ne2, Te2, ni1, Ti1,
etc.

2.1.2 Debye Shielding

The concept of Debye shielding is fundamen-
tal to plasma physics. Qualitatively, Debye
shielding can be viewed as a screening process
whereby the mobile charges in a plasma screen
out, or spatially neutralize an immersed test
charge. For instance, consider placing a positive
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point charge within a plasma. The plasma par-
ticles, which exist in a gaseous state, are mobile
and will respond to the presence of the charge:
the positive test charge will attract a neigh-
boring cloud of negative charges while creating
a local void of positive charges in its vicinity.
When averaged over some region in space cen-
tered on the test charge, the net charge within
the specified volume will be zero. As a result,
another test charge placed a long way from this
volume will see a cloud with zero net charge
and will thus experience very little electrostatic
force from the test charge.

The Debye length is calculated from plasma
parameters according to

λd =

√
ε0KT

ne2
(2.1)

where e is the elementary charge and k is Boltz-
manns constant. In a multi-fluid model, a to-
tal Debye length for the plasma can be calcu-
lated from each species. For instance, in a two-
fluid (electrons and ions) model the total Debye
length is2

λ−2
d = λ−2

d,e + λ−2
d,i (2.2)

where λd,e/i is the electron/ion Debye length
defined by ne,Te and ni,Ti. More complicated
multi-fluid models can be treated in a straight-
forward extension of this summation. Because
of Debye shielding, the Coulomb electrostatic
interaction between charged objects is modi-
fied in plasma as compared to the interaction
in vacuum. Defining F0(d) as the well known
Coulomb interaction force given by

F0(d) =
1

4πε0
q1q2
d2

(2.3)

the electrostatic interaction within a plasma
can be expressed as F (d) = F0(d)e−d/λd .

It is apparent that very little electrostatic
force can be exerted over a distance more than
a few Debye length. A graphical depiction of
Debye shielding is shown in Figure 2.1.

 

Figure 1.  Depiction of Debye shielding in plasma. 
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electrostatic forces on other charged vehicles, it is necessary that the inter-spacecraft 

spacing be less than a few Debye lengths to avoid the need for excessive and unrealistic 

charge magnitudes to affect Coulomb interaction. 

It is convenient to define three fundamental length scales to categorize Coulomb 

thrusting operations.  These length scales are the inter-spacecraft separation, d, the 

ambient plasma Debye length, !d, and the characteristic spacecraft size defined by DSC.  

Using these length scales, Coulomb maneuvers can be loosely organized into three 

regimes defined by the length scale ordering: Proximity Operations (ProxOps), 

Formation Flight, and Swarm Flight. 
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less than both the Debye length and the spacecraft size, or d<!d<DSC.  Examples of such 

maneuvers are docking or deployment, where Coulomb interactions are used to control 

Figure 2.1: Depiction of Debye shielding in
plasma.

2.1.3 Coulomb Thrusting Maneuvers
in Plasma

The concept explored in this research is strongly
governed by the prevailing Debye length in
the vicinity of the spacecraft swarm or forma-
tion. Since the craft exert electrostatic forces
on other charged vehicles, it is necessary that
the inter-spacecraft spacing be less than a few
Debye lengths to avoid the need for exces-
sive and unrealistic charge magnitudes to affect
Coulomb interaction.

It is convenient to define three fundamental
length scales to categorize Coulomb thrusting
operations. These length scales are the inter-
spacecraft separation, d, the ambient plasma
Debye length, λd, and the characteristic space-
craft size defined by DSC . Using these length
scales, Coulomb maneuvers can be loosely orga-
nized into three regimes defined by the length
scale ordering: Proximity Operations (Prox-
Ops), Formation Flight, and Swarm Flight.
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2.1.3.1 ProxOps

In the operational envelope defined as ProxOps,
the inter-spacecraft separation is less than both
the Debye length and the spacecraft size, or
d < λd < DSC . Examples of such maneuvers
are docking or deployment, where Coulomb in-
teractions are used to control spacecraft mo-
tion at very close distance of approach. A
schematic of ProxOps length scaling is shown
in Figure 2.2.

spacecraft motion at very close distance of approach.  A schematic of ProxOps length 

scaling is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Illustration of ProxOps maneuvers in which d<!d<DSC.  Spacecraft interact 

only at very close separation. 
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simultaneously.  Formation flight dynamics are thus highly coupled.  Formation flight is 

shown figuratively in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Illustration of Formation Flight dynamics.  Since 
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each vehicle is 

electrostatically coupled to all (or most) other vehicles in the group. 
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Figure 2.2: Illustration of ProxOps maneuvers in
which d < λd < DSC . Spacecraft interact only at
very close separation.

2.1.3.2 Formation Flight

Formation flight represents relatively widely
dispersed spacecraft in a hot, low- density
plasma having large Debye length. The length
scaling for formation flight is DSC < d � λd.
In formation flight, the electrostatic interac-
tion between vehicles approaches that of point
charges in vacuum. Furthermore, each vehicle
in a formation interacts electrostatically with
all or most of the other vehicles in the formation
simultaneously. Formation flight dynamics are
thus highly coupled. Formation flight is shown
figuratively in Figure 2.3.

2.1.3.3 Swarm Flight

Swarm flight occupies an operational regime
somewhat between that of Formation and Prox-
Ops. Length scaling for Swarm flight is DSC <

spacecraft motion at very close distance of approach.  A schematic of ProxOps length 

scaling is shown in Figure 2. 
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Figure 3.  Illustration of Formation Flight dynamics.  Since 
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each vehicle is 

electrostatically coupled to all (or most) other vehicles in the group. 
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Figure 2.3: Illustration of Formation Flight dy-
namics. Since DSC < d � λd each vehicle is elec-
trostatically coupled to all (or most) other vehicles
in the group.

d ≈ λd. Qualitatively, Swarm flight can be en-
visioned as a nearest neighbor interaction where
each vehicle in the group is electrostatically cou-
pled only to the vehicles in the immediate vicin-
ity. In this fashion, a vehicle can electrostati-
cally communicate with any other vehicle in the
swarm by wave-like propagation through adja-
cent craft. A swarm schematic is shown in Fig-
ure 2.4.

 

Swarm Flight 

 

Swarm flight occupies an operational regime somewhat between that of 

Formation and ProxOps.  Length scaling for Swarm flight is DSC<d~!d.  Qualitatively, 

Swarm flight can be envisioned as a “nearest neighbor” interaction where each vehicle in 

the group is electrostatically coupled only to the vehicles in the immediate vicinity.  In 

this fashion, a vehicle can electrostatically “communicate” with any other vehicle in the 

swarm by wave-like propagation through adjacent craft.  A swarm schematic is shown in 

Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Illustration of Swarm Flight.  Vehicles interact only with nearest neighbors 

and long-distance coupling occurs through intermediaries. 

 

2. Plasma Parameters in Earth Orbit 

2.1. Overview of Earth’s Magnetosphere 

 

The magnetosphere is the local plasma environment created through an 

interaction of the Earth’s magnetic field with the solar wind.  An image of the 

magnetosphere is shown in Figure 5.  Starting from Earth, the nearest region of the 

magnetosphere is known as the ionosphere.  The ionosphere is created as upper 

atmospheric gasses are ionized through ultra-violet radiation and cosmic rays.  The 

ionosphere plasma is relatively dense and cool and encompasses the orbital regime of 

Low-Earth Orbit (LEO).  Extending away from the ionosphere is the plasmasphere.  The 

plasmasphere is populated by evaporation and escape of the ionosphere plasma 

constituents into deep space.  The lower Van Allan radiation belt exists within the 

plasmasphere;  this belt contains a population of high-energy trapped solar wind particles 

superimposed on the cool plasmasphere.  The plasma density in the plasmasphere 
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Figure 2.4: Illustration of Swarm Flight. Vehi-
cles interact only with nearest neighbors and long-
distance coupling occurs through intermediaries.
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smoothly decays with altitude, while the plasma temperature slowly increases.  This 

smooth transition abruptly terminates at the plasmapause at an altitude of 4-5 Earth Radii 

(RE).  The plasmapause is a sharp shock-like boundary that separates the cool, dense 

plasmasphere from the hot, low-density plasma of the outer magnetosphere and the outer 

Van Allen belt.  Geostationary Earth Orbit (GEO) is located beyond the Van Allen belts 

in the outer magnetosphere with an orbit radius of 6.6 RE.  The outer magnetosphere 

plasma and GEO environment is comprised of hot, low-density protons and electrons 

from the solar wind penetrating through the bow-shock. 

Voyaging further from the Earth on the sunward side one encounters the outer 

edge of the magnetosphere known as the magnetopause, which separates the local Earth 

plasma environment from the interplanetary solar wind.  Extending out from the Earth on 

the anti-sunward side is a long streaming tail known as the plasma sheet.  The plasma 

sheet extends some 100 RE and is greatly affected by solar weather.  In the high-latitude 

regions, the polar cusps represent open-field-line paths for the solar wind plasma to 

penetrate to the Earth’s surface.  Within these cusps high-energy solar wind particles 

precipitate into the polar regions.  The region between the polar cusp and the plasma 

sheet on the anti-sunward side is a magnetically protected region known as the lobe that 

is nearly devoid of plasma. 

 

 

Figure 5.  Graphical depiction of regions within the Earth’s magnetosphere. 

 
Figure 2.5: Graphical depiction of regions within the Earths magnetosphere.

2.2 Plasma Parameters in
Earth Orbit

2.2.1 Overview of Earths
Magnetosphere

The magnetosphere is the local plasma envi-
ronment created through an interaction of the
Earths magnetic field with the solar wind. An
image of the magnetosphere is shown in Fig-
ure 2.5. Starting from Earth, the nearest re-
gion of the magnetosphere is known as the iono-
sphere. The ionosphere is created as upper
atmospheric gasses are ionized through ultra-
violet radiation and cosmic rays. The iono-
sphere plasma is relatively dense and cool and
encompasses the orbital regime of Low-Earth
Orbit (LEO). Extending away from the iono-
sphere is the plasmasphere. The plasmasphere
is populated by evaporation and escape of the
ionosphere plasma constituents into deep space.
The lower Van Allan radiation belt exists within
the plasmasphere; this belt contains a popula-
tion of high-energy trapped solar wind particles
superimposed on the cool plasmasphere. The

plasma density in the plasmasphere smoothly
decays with altitude, while the plasma temper-
ature slowly increases. This smooth transition
abruptly terminates at the plasmapause at an
altitude of 4-5 Earth Radii (RE). The plasma-
pause is a sharp shock-like boundary that sepa-
rates the cool, dense plasmasphere from the hot,
low-density plasma of the outer magnetosphere
and the outer Van Allen belt. Geostationary
Earth Orbit (GEO) is located beyond the Van
Allen belts in the outer magnetosphere with an
orbit radius of 6.6 RE . The outer magneto-
sphere plasma and GEO environment is com-
prised of hot, low-density protons and electrons
from the solar wind penetrating through the
bow-shock.

Voyaging further from the Earth on the sun-
ward side one encounters the outer edge of the
magnetosphere known as the magnetopause,
which separates the local Earth plasma envi-
ronment from the interplanetary solar wind.
Extending out from the Earth on the anti-
sunward side is a long streaming tail known as
the plasma sheet. The plasma sheet extends
some 100 RE and is greatly affected by solar
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Table 2.1: Numerical Simulation Parameters

Density Temperature Debye
Region Altitude (m−3) (eV) Length (m)

Ionosphere 1 Re 1011–1012 0.02–0.2 0.01–0.03

Plasmasphere3 1–5 Re 109–1010 0.2–1.2 0.03–0.26

GEO/Outer
Magneto-
sphere4

5–10 Re 5 · 105–107 1,000–3,000 75–575

Plasmasheet 10–15 Re sunward 5 · 105–8 · 105 1,700–25,000 340–1,600
Magnetotail3 10–100’s Re anti-sunward

Solar Wind5 Outside magnetosphere 3 · 106–9 · 106 10–100 8–43

weather. In the high-latitude regions, the polar
cusps represent open-field-line paths for the so-
lar wind plasma to penetrate to the Earths sur-
face. Within these cusps high-energy solar wind
particles precipitate into the polar regions. The
region between the polar cusp and the plasma
sheet on the anti-sunward side is a magneti-
cally protected region known as the lobe that
is nearly devoid of plasma.

2.2.2 Compatible Orbits for
Coulomb Thrusting

In order to perform Coulomb thrusting be-
tween spacecraft it is necessary that the plasma
Debye length be greater than (or at least on the
order of) the inter-spacecraft separation. This
precludes the use of Coulomb control in cold,
high-density plasmas such as that found in the
ionosphere environment of LEO orbits. A qual-
itative depiction of the magnetosphere plasma
environment is shown in Figure 2.6, where the
diagonal lines represent constant values of De-
bye length with plasma density and tempera-
ture indicated on the axes. For approximate
values, the Heidelberg Dust Research group
has compiled a convenient set of representative
plasma parameters∗ that are repeated in Ta-

∗http://www.mpi-hd.mpg.de/dustgroup/∼graps/

earth/magnetosphere.html
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Figure 6.  Plasma regimes of the Earth’s magnetosphere.  Red diagonal lines indicate 

constant values of Debye length. 

 
Region Altitude Density (m-3) Temperature 

(eV) 

Debye Length 

(m) 

Ionosphere ~1 RE 10
11

-10
12

 0.02-0.2 0.01-0.03 

Plasmasphere
3
 1-5 RE 10

9
-10

10
 0.2-1.2 0.03-0.26 

GEO/Outer 

Magnetosphere
4
 

5-10 RE 5x10
5
-1x10

7
 1,000-3,000 75-575 

Plasmasheet 

Magnetotail
3
 

10-15 RE sunward 

10-100’s RE anti-sunward 

5x10
5
-8x10

5
 1,700-25,000 340-1,600 

Solar Wind
5
 Outside magnetosphere 3x10

6
-9x10

6
 10-100 8-43 

Table 1.  Approximate plasma parameters within the Earth’s magnetosphere. 

Figure 2.6: Plasma regimes of the Earths magne-
tosphere. Red diagonal lines indicate constant val-
ues of Debye length.

ble 2.1.
It is apparent from Figure 2.6 and Table 2.1

that the only feasible regime for inter- space-
craft Coulomb thrusting with contemporary-
sized vehicles is the outer magnetosphere/GEO
orbital environment. The centimeter-scale De-
bye lengths inside the plasmasphere render elec-
trostatic interaction between vehicles negligible
at all but the very closest separation distances.

Fortunately, detailed studies of the GEO
plasma are readily available. Due to the high-
value of assets placed in GEO coupled with
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Table 2.2: Average GEO Environment6

Parameter Electrons Ions

Number density n1, (1st Maxwellian fit) m−3 0.78± 0.7·106 0.19± 0.16·106

Temperature kT1/e, (1st Maxwellian fit) eV 0.55± 0.32·103 0.8± 1.0·103

Number density n2, (2nd Maxwellian fit) m−3 0.31± 0.37·106 0.39± 0.26·106

Temperature kT2/e, (2nd Maxwellian fit) eV 8.68± 4.0·103 15.8± 5.0·103

Table 2.3: Worst-Case GEO Environment6

Parameter Electrons Ions

Number density n1, (1st Maxwellian fit) m−3 1.0 · 106 1.1 · 106

Temperature kT1/e, (1st Maxwellian fit) eV 600 400

Number density n2, (2nd Maxwellian fit) m−3 1.4 · 106 1.7 · 106

Temperature kT2/e, (2nd Maxwellian fit) eV 2.51 · 104 2.47 · 104

the propensity for potentially damaging space-
craft charging in the outer magnetosphere, the
GEO plasma has been extensively characterized
by early missions such as SCATHA,7 ATS-5,
and ATS-6.8,9 The particle detectors on the
ATS4,10,11 and SCATHA6 spacecraft have mea-
sured plasma variations for 50 complete days at
1 to 10 minute resolution from 1969 through
1980, bracketing one solar cycle.

Garrett and DeForest4 fitted an analytical
multi-fluid model to data collected over 10 dif-
ferent days from ATS-5 spacecraft between 1969
and 1972. These data were selected in such a
way to show a wide range of geomagnetic activ-
ity including plasma injection events (i.e. sud-
den appearance of dense, relatively high energy
plasma at GEO occurring at local midnight).
The model gives reasonable and consistent rep-
resentation of the variations following a sub-
storm injection event at GEO. The parameters
for this model during average GEO conditions
are shown in Table 2.2 with Worst-case GEO
conditions given in Table 2.3.

Based on the detailed multi-fluid GEO

plasma model, work reported here will assume
these values represent accurate properties of the
outer magnetosphere plasma from the plasma-
pause out to the magnetosheath. Using the def-
inition of Debye length for a multi-fluid model,
the data from Table 2.2 and Table 2.3 imply an
ambient Debye length between 110 and 180 m
in the outer magnetosphere. Armed with these
data, it is possible to consider the families of or-
bits that may be compatible with the Coulomb
thrusting concept considered in this study.

Clearly, GEO orbits are well suited to the
Coulomb concept, with inter-spacecraft separa-
tions of 100-300 m possible within the large De-
bye lengths present in this regime. Medium-
Earth Orbits (MEOs) are also candidates at
altitudes greater than the plasmapause at ap-
proximately 4.5 RE . While LEO orbits are not
candidates, it may be possible to exploit Highly
Elliptical Orbits (HEOs), wherein Coulomb
thrusting occurs at or near apogee and provides
a periodic corrective ability to a low-perigee or-
bit. A schematic of orbit families and their rela-
tion to the plasmasphere is shown in Figure 2.7.
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Figure 7.  Orbital families and their relation to the Earth’s plasmasphere.  LEO and 

MEO orbits with radii less than about 4.5 RE experience too much Debye shielding for 

electrostatic interaction.  High MEO and GEO orbits are excellent candidates, with 

inter-spacecraft separation of 100’s of meters possible.  There may also be the potential 

to exploit HEO orbits, where Coulomb thrusting is performed at a high apogee. 

 

2.3. Temporal Variation of Plasma Parameters 

 

Plasma parameters in the magnetosphere are strongly affected by solar weather 

and can change on the timescale of minutes.  This can affect Coulomb-interacting 

spacecraft in two ways: 1) a sudden increase/decrease in the ambient Debye length can 

cause a perturbation that must be corrected using active charge control, 2) inflation of the 

plasmapause can immerse a MEO-orbiting group of spacecraft within the cold, dense 

plasmasphere  producing orders-of-magnitude decrease in the Debye length such that 

inter-spacecraft thrusting is no longer possible. 

Figure 2.7: Orbital families and their relation to the Earths plasmasphere. LEO and MEO orbits with
radii less than about 4.5 RE experience too much Debye shielding for electrostatic interaction. High MEO
and GEO orbits are excellent candidates, with inter-spacecraft separation of 100s of meters possible. There
may also be the potential to exploit HEO orbits, where Coulomb thrusting is performed at a high apogee.

2.2.3 Temporal Variation of Plasma
Parameters

Plasma parameters in the magnetosphere are
strongly affected by solar weather and can
change on the timescale of minutes. This can
affect Coulomb-interacting spacecraft in two
ways: 1) a sudden increase/decrease in the
ambient Debye length can cause a perturba-
tion that must be corrected using active charge
control, 2) inflation of the plasmapause can
immerse a MEO-orbiting group of spacecraft
within the cold, dense plasmasphere produc-
ing orders-of-magnitude decrease in the Debye
length such that inter-spacecraft thrusting is no
longer possible.

Variation in Debye length for outer magneto-
sphere/GEO regimes was captured by the Go-
rizont satellites. The Gorizont satellites, which
are telecommunications platforms, also carried
instruments to monitor the space environment.
Tabulated values of plasma parameters as mea-
sured from Gorizont are available through ESAs

Space Environment Effects and Education Sys-
tem (SPENVIS).† A collection of three orbital
days were chosen, somewhat at random, from
the list of available data to investigate the vari-
ation in local plasma conditions. Plots of Debye
length at GEO are shown in Figure 2.8 as mea-
sured by Gorizont. As expected from the ATS-5
and 6 data sets, the ambient Debye length is on
the order of 100 meters. Because of solar activ-
ity, the Debye length is seen to vary by as much
as 400% over one orbital day.

Movement of the plasmapause can affect
MEO formations whose orbit radii are near the
transition to the outer magnetosphere. Since
this boundary is dynamic, sudden inflation of
the plasmasphere due to solar activity could
envelop a low-MEO formation in cold, dense
plasma rendering Coulomb interaction impos-
sible. Data reported by the Heidelberg Dust
Group presents an engineering model of the
magnetospheric plasma as a function of altitude

†http://www.spenvis.oma.be/spenvis/
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Variation in Debye length for outer magnetosphere/GEO regimes was captured by 

the Gorizont satellites.  The Gorizont satellites, which are telecommunications platforms, 

also carried instruments to monitor the space environment.  Tabulated values of plasma 

parameters as measured from Gorizont are avialble through ESA’s Space Environment 

Effects and Education System (SPENVIS).
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  A collection of three orbital days were 

chosen, somewhat at random, from the list of available data to investigate the variation in 

local plasma conditions.  Plots of Debye length at GEO are shown in Figure 8 as 

measured by Gorizont.  As expected from the ATS-5 and 6 data sets, the ambient Debye 

length is on the order of 100 meters.  Because of solar activity, the Debye length is seen 

to vary by as much as 400% over one orbital day. 
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Figure 8.  Variation in plasma Debye length at GEO as measured by Gorizont 

spacecraft. 

 

Movement of the plasmapause can affect MEO formations whose orbit radii are 

near the transition to the outer magnetosphere.  Since this boundary is dynamic, sudden 

inflation of the plasmasphere due to solar activity could envelop a low-MEO formation in 

cold, dense plasma rendering Coulomb interaction impossible.  Data reported by the 

Heidelberg Dust Group presents an engineering model of the magnetospheric plasma as a 

function of altitude and time.  The model presents separate results for “quiet” Earth 

plasma conditions as well as “disturbed” conditions representative of high solar activity.  

Plots of the cold electron fluid density are shown in Figure 9 and Figure 10. 

The plasmapause is apparent in Figure 9 and Figure 10 as the abrupt decrease in 

density that occurs between about 3 RE and 6 RE.  During quiet conditions the 

plasmapause is seen to be somewhat stable and located near 5 RE, with the exception of 

orbital times between 18 and 24 hours, where the cold plasma can reach 10 RE.  During 

Figure 2.8: Variation in plasma Debye length at GEO as measured by Gorizont spacecraft.

and time. The model presents separate results
for quiet Earth plasma conditions as well as dis-
turbed conditions representative of high solar
activity. Plots of the cold electron fluid density
are shown in Figure 2.9 and Figure 2.10.‡

The plasmapause is apparent in Figure 2.9
and Figure 2.10 as the abrupt decrease in den-
sity that occurs between about 3 RE and 6 RE .
During quiet conditions the plasmapause is seen
to be somewhat stable and located near 5 RE ,
with the exception of orbital times between 18
and 24 hours, where the cold plasma can reach
10 RE. During disturbed conditions, the overall
plasma density in the region just outside of the
plasmapause increases over the quiet case, al-
though the boundary is somewhat more station-
ary. Thus, while it may be possible for Coulomb
interaction in orbits below GEO down to about
4 RE , any mission in this orbital regime must be
robust against sudden expansion of the plasma-
sphere and interruption of the Coulomb thrust
mechanism.

‡http://www.mpi-hd.mpg.de/dustgroup/∼graps/

earth/magnetosphere.html

disturbed conditions, the overall plasma density in the region just outside of the 

plasmapause increases over the quiet case, although the boundary is somewhat more 

stationary.  Thus, while it may be possible for Coulomb interaction in orbits below GEO 

down to about 4 RE, any mission in this orbital regime must be robust against sudden 

expansion of the plasmasphere and interruption of the Coulomb thrust mechanism. 

 

 

Figure 9.  Model of cold electron magnetospheric density during quiet solar conditions.
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Figure 10.  Model of cold electron magnetospheric density during active solar 

conditions.
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Figure 2.9: Model of cold electron magnetospheric
density during quiet solar conditions
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Figure 10.  Model of cold electron magnetospheric density during active solar 

conditions.
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Figure 2.10: Model of cold electron magneto-
spheric density during active solar conditions
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Chapter 3

Orbital Disturbance Study for
Coulomb Spacecraft Clusters

This chapter discusses the expected distur-
bance levels that a cluster of spacecraft will ex-
perience. The orbit altitudes will range from
Low Earth Orbit (LEO) to Geostationary Earth
Orbits (GEO), while the spacecraft separation
distances vary between 10 and 1000 meters. In
particular, the worst case accelerations rela-
tive to the spacecraft cluster/formation center
of mass are of interest. This information will
then be used to determine minimum required
maintenance charge/voltage levels to be able to
compensate for these disturbances.

There are three types of disturbances that are
modelled. First are the differential J2 through
J6 gravitational zonal harmonics. Second, the
atmospheric drag force due to flying in low
Earth orbit is be modelled. Third, the solar ra-
diation pressure due to the sun is also modelled.
Finally, a study shows how large the magnetic
Lorentz force magnitudes can grow if a charged
craft is flying through Earth’s weak magnetic
environment.

3.1 Relative Acceleration
Magnitudes

To study the relative motion of spacecraft in
nearly circular orbits, the Clohessy-Wiltshire-
Hill equations are commonly used.12–14 These
equations linearize the relative motion dynam-
ics with respect to a constantly rotating refer-
ence orbit. They have a well-known analytical
solution to the unperturbed motion which de-

couples the in-plane and out of orbit plane mo-
tions. The CW equations are very convenient
to develop rendezvous and near-circular forma-
tion flying control laws.15,16 With traditional
spacecraft formation flying concepts, each craft
contains its own inertial propulsion system, typ-
ically a high efficiency ion engine. As relative
motion errors are detected, the thruster is used
to correct the motion with respect to the rotat-
ing Hill frame.

However, the Coulomb thrusting concepts
acts very differently. Here the spacecraft push
and pull off each other to control the rela-
tive motion. The inertial orbit of the clus-
ter is of secondary importance compared to
the formation shape and is not compensated
for with Coulomb thrusting. Thus, to deter-
mine the necessary relative orbit maintenance
charge/voltage levels to compensate for differ-
ential perturbations, it is essential that the drift
of the formation center of mass (Hill frame ori-
gin) is taken into account.

In order to avoid the linearization and con-
stant orbit rate issues of the CW equations,
we have chosen to use a full non-linear simu-
lation of the spacecraft with the perturbations
included as inertial acceleration vectors. Fig-
ure 3.1 describes the set-up of the relative mo-
tion problem and the notation to be used in
the rest of this report. Let there be N charged
spacecraft present. The inertial position vectors

12
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of the satellites is given by ri, while

rc =
1
M

N∑
i=1

miri (3.1)

is the formation inertial center of mass vector.
Here M is the total system mass and mi is the
mass of the ith spacecraft. The velocity of the
center of mass can be computed by differenti-
ating the center of mass condition once to yield
the following.

ṙc =
1
M

N∑
i=1

miṙi (3.2)

The Hill frame unit direction vectors H :
{ı̂r, ı̂θ, ı̂h} are defined through:

ı̂r =
rc

rc
(3.3)

ı̂θ = ı̂h × ı̂r (3.4)

ı̂h =
rc × ṙc

|rc × ṙc|
(3.5)

In the CW equations, this frame is treated as
having a constant rotation rate. However, in
this differential disturbance study the actual
ṙc is taken into account. The rotation ma-
trix [HN ], which will rotate vector components
taken with respect to the inertial frame to vec-
tor components taken with respect to the the

Hill frame, is defined as

[HN ] =

 ı̂T
r

ı̂T
θ

ı̂T
h

 (3.6)

Defining the relative position vector as

ρi = ri − rc (3.7)

this vector can be mapped between inertial and
Hill frame vector components using

Hρi = [HN ] Nρi (3.8)

The inertial equations of motion of a satellite
are given by

r̈i = − µ

ri3
ri + adi

(3.9)

where adi
is the disturbance acceleration acting

on the ith satellite. Of interest is how this dis-
turbance acceleration will influence the motion
of the satellite relative to the formation/cluster
center of mass rc. In particular, we take into
account here that rc itself will also be influ-
ence by the disturbance. For example, if both
satellites are experiencing the same atmospheric
drag, then the differential disturbance would be
zero because the center of mass is being dis-
turbed by the same amount as the satellites.
Similarly, if one satellite has twice the distur-
bance drag acceleration compared to the 2nd
craft, then each craft would only have to com-
pensate for half of this drag (assuming equal
masses).

Equation (3.9) is used to perform any numer-
ical simulations. Any Hill-frame specific ini-
tial conditions are first mapped into the iner-
tial frame to start the simulation. The inertial
acceleration is written as

r̈i = r̈c + ρ̈i (3.10)

Next, let ¨̂ρi be the inertial relative acceleration
if the no disturbance accelerations are present
(Keplerian motion case).

¨̂ρi = ¨̂ri − ¨̂rc (3.11)
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Here ¨̂ri and ¨̂rc are defined as follows:

¨̂ri = − µ

ri3
ri (3.12)

¨̂rc =
1
M

N∑
i=1

mi
¨̂ri (3.13)

Thus the ˆ quantities are the unperturbed accel-
erations of the Keplerian relative motion case.
Using Eq. (3.9) to integrate the satellite iner-
tial position vectors, at any instant of time the
ri(t) will be available during post-processing,
and these local “unperturbed” states can be
computed.

Next, the relative inertial acceleration, ρ̈i,
can be written as

ρ̈i = ¨̂ρi + δρ̈i (3.14)

where we separate the naturally occurring rela-
tive acceleration from the relative acceleration
due to the perturbation forces. Solving for the
differential disturbance acceleration vector δρ̈i

we find

δρ̈i = r̈i − r̈c − ¨̂ρi (3.15)

To be able to maintain a cluster or formation
of charged spacecraft, the spacecraft charging
capabilities must be large enough to be able to
compensate for the worst case differential dis-
turbance acceleration δρ̈i which will be encoun-
tered for a particular orbit altitude and forma-
tion size. With each orbital disturbance type
the differential disturbance acceleration is com-
puted. These worst case disturbance acceler-
ation values are then used in the next chap-
ter to compute required minimum spacecraft
charge/voltage levels to compensate for this dis-
turbance.

Unless noted otherwise, all spacecraft are as-
sumed to be spherical in shape and have a mass
of mi = 50 kg. Their radius is 0.5 meters.

3.2 Differential Gravitational
Zonal Harmonics

The J2 through J6 perturbations arise from
the fact that the Earth is not a perfect sphere,

but rather ellipsoidal in shape. These effects
have been estimated by observing the motion of
spacecraft orbiting the Earth and are expressed
in the form of zonal and tesseral spherical har-
monic expansion coefficients. Of these gravi-
tational disturbances, the 2nd order zonal har-
monic called the J2 term is about three orders
of magnitude larger than the remain harmon-
ics. It provides the dominant formation flying
perturbation for spacecraft of equal type and
build.17 These formation flying spacecraft are
typically envisioned to be flying about 1 km
apart, or further.18 However, for the Coulomb
thrusting concept study, much smaller sepa-
ration distances are considered. With these
smaller separation distances the differential J2

influence will become ever smaller. Of interest
is how these differential accelerations compare
to other orbital perturbations such as differen-
tial atmospheric drag and differential solar ra-
diation pressure.

The inertial disturbance acceleration vector
due to J2 through J6 can be modelled as direct
functions of inertial position and the first six
zonal harmonics. However, only the first zonal
harmonic has a significant contribution for this
study and is expressed as:.14

aJ2 =
−3
2
J2

( µ
r2

) (req
r

)2


(
1−5

(
Z
r

)2
)

X
r(

1−5
(

Z
r

)2
)

Y
r(

3−5
(

Z
r

)2
)

Z
r


(3.16)

Here req is the equatorial radius of the Earth
and µ is the gravitational constant of the Earth.
The variables X, Y , and Z are the position co-
ordinates with respect to the ECI (Earth Cen-
tered Inertial) frame and the orbit radius r
takes on the form of:

r =
√
X2 + Y 2 + Z2 (3.17)

The magnitude of the J2 induced relative mo-
tion disturbance depends on how the relative
orbit is formed (is out-of-plane motion achieve
through inclination or ascending node differ-
ences), and on the location (anomaly angle)

14
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Figure 3.2: Plot of J2 induced relative acceleration magnitude over one orbit period

within the orbit.14,19,20 This study is based
on investigating worst case scenarios to de-
termine minimum spacecraft charge sizing re-
quirements. The radar interferometry problem
was of particular interest to this project. Here
the desired relative orbits have circular projec-
tions relative to the local horizontal plane (ı̂θ–ı̂h

plane). Let a relative position vector be written
using Hill frame vector components as

ρ = xı̂r + yı̂θ + zı̂h (3.18)

The analytical solution to the linear CW equa-
tions shows that all bounded relative orbits with
a circular chief must satisfy:13,14

x(t) = A0 cos (nt+ α) (3.19)
y(t) = −2A0 sin (nt+ α) (3.20)
z(t) = B0 cos (nt+ β) (3.21)

where A0 and B0 are relative orbit amplitudes,
while α and β are phase angles of the relative
motion. The parameter n =

√
µ/rc

3
is the

chief’s mean orbit rate. To achieve the circu-
lar projection of the relative motion in the lo-
cal horizontal plane, the initial orbit must be
setup such that B0 = 2A0, and either α = β or

α = β + π.14 To determine the worst case dif-
ferential J2 accelerations, a quick study is pre-
formed where the phase α is swept across all
possible values. All orbits are initialized as they
cross the equator.

The following plots in Figure 3.2 show the
time histories of acceleration magnitude for J2

perturbations, with four different initial condi-
tion α sets. From the figure we can see that
when α is initially either 90 or 270 degrees
produces a slightly larger acceleration magni-
tude over an orbit period. Because of symme-
try, both satellites in those positions have the
same relative acceleration magnitude over time.
Since our overall goal is to size the accelera-
tions for the worst possible case we will choose
that as our initial condition for all the cases.
Thus, to determine the worst case differential
J2 disturbance acceleration, these initial condi-
tions are used to setup two satellites and then
integrate the inertial equations of motion for
one orbit. The worst differential acceleration is
then recorded for the particular orbit altitude
and relative orbit size.

Figure 3.3 and 3.4 illustrate the maxi-
mum differential J2 accelerations in units of
log10(m/s2). The altitude (horizontal axis) is

15
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swept form LEO 300 km heights to GEO 35,000
km heights. The separation distances (the A0

parameter in Eq. (3.19)) is swept from 10 – 1000
meters. The chief orbit is set to be a circle in
each case. The contour plots illustrates the re-
sulting maximum differential J2 induced accel-
erations that were encountered. For cases are
illustrated for chief inclination angles of 0, 30,
60 and 90 degrees.

As expected, the differential J2 perturbations
increase with increasing formation size and with
decreasing orbit altitude. As the orbit inclina-
tions are increased, the resulting worst cases dif-
ferential accelerations increase slightly, but not
substantially.

3.3 Differential Atmospheric
Perturbations

The next perturbation to examine is the drag
force due to the atmosphere. This effect will
be dominant in the low earth orbit altitudes
and become negligible at higher altitudes. The
magnitude of acceleration due to atmospheric
drag is modeled in the following equation.14

aD = −1
2
ρ(CdA/m)V 2 (3.22)

Here ρ is the atmospheric density, CD is the
coefficient of drag, A is the satellite’s cross-
sectional area of the satellite, and V is the cur-
rent inertial velocity of the spacecraft. We know
that the drag force acts in the opposite direction
of velocity so the vector form of the acceleration
can be written as follows:14

adi
= adi

ı̂v = adi

ṙi

|ṙi|
(3.23)

Equation 3.22 shows that the atmospheric dis-
turbance magnitude is a function of atmo-
spheric density, which in itself is a function of al-
titude. Therefore, in order to model drag force
at varying altitudes we must have a reasonably
accurate atmospheric density model.

The atmospheric density model used is the
United States Standard Atmosphere Model
from 1976. Most newer atmospheric models are
functions of the time of year and solar flux, but

this model contains accurate density data that
is only a function of altitude. The actual model
contains density data for altitudes ranging from
86 to 1000 km. Above this range it is assumed
that density becomes very close to zero and the
drag force is non-existent.21

In examining the data, the density follows an
almost exponential decrease versus the increase
in altitude. For this reason, a 6th order poly-
nomial curve fit is done on the log of density
versus altitude. The resulting non-exponential
atmospheric curve fit versus actual data from
Reference 21 is plotted in Figure 3.5.
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Figure 3.5: 6th Order polynomial Fit for Atmo-
spheric Model.

From the figure we can see that the curve
fit matches quite well. However, after 1000 km
there is no data on atmospheric density since
it is considered to be essentially zero. But, for
the purpose of creating a smooth model that
will apply for all altitudes, it will be assumed
that the density will have a smooth exponential
drop off up to GEO.

The next two variables to model in Eq. 3.22
are the coefficient of drag Cd and the cross-
sectional area A. For the purpose of sizing the
value of Cd, a general cylindrical shape is con-
sidered for our spacecraft rather than the pre-
vious spherical model. If spherical spacecraft
of equal mass are considered, then the differen-
tial atmospheric draft would be trivially zero.
Rather, in the cylindrical spacecraft case the
attitude of the spacecraft will have an influence
on the Cd value. This aspect allows us to study
differential drag for two or more satellites in
a formation. For a spacecraft with a cylindri-
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cal shape without solar cells, the average value
for Cd used is about 2.2.22 However, this will
vary with the attitude, and for purposes of this
study we will just consider the worst and best
case scenarios for Cd. Figure 3.6 shows the the
orientation of a cylindrical craft with respect to
the velocity vector for these two cases.

(a) Best-Case Scenario

(b) Worst-Case Scenario

Figure 3.6: Diagram of Cylindrical Spacecraft

From this figure we can see that the two dif-
ferent cases will greatly depend on shape of the
cylinder and not only its orientation. For exam-
ple, if you have a cylinder with a height much
smaller than its radius it would have a differ-
ent Cd then a case where the height is much
greater than the radius of the cylinder. This
can yield a complicated relationship; so for our
study, we can assume that most spacecraft will
have a height and diameter (2r) that are close
to equal, so that this kind of effect can be ig-
nored.

The next step is to estimate the value for Cd

for worst and best case scenarios based on ex-
isting data on an actual spacecraft. In Refer-
ence 22 there is one specific craft, Intercosmos-
16, which is a scientific spacecraft with a cylin-
drical shape and no solar panels. The data ta-
ble on its drag properties has a Cd for maxi-
mum cross-sectional area of 2.67 and for min-

imum cross-sectional area that value drops to
2.1. This data gives us a sufficient range of Cd

values to use in our study of differential drag on
a formation of satellites.

For a cylindrical shaped spacecraft it is fairly
easy to compute the cross-sectional area for the
maximum and minimum cases. For the maxi-
mum cross-sectional area, the craft will be ori-
ented as in Figure 3.6(b). Therefore the area as
seen by the velocity vector is rectangle with the
equation:

Amax = 2rh (3.24)

For the minimum cross-sectional area, the craft
would be oriented as in Figure 3.6(a). There-
fore, the area as seen by the velocity vector
would be a circle with the equation:

Amin = πr2 (3.25)

Also note that the previous assumption on the
shape of the spacecraft must hold for these
equations to represent the maximum and min-
imum cross-sectional area. The assumption
stated that the height is close to that of the
diameter, thus assuming that our spacecraft is
not a long cylinder shaped boom or a flat disc.
And for our study, this will generally be the case
for our spacecraft.

For our differential atmospheric drag simula-
tions we chose the typical craft configurations
with a mass of 50 kg craft, while the radius is
0.5 meters and a height equal to three times the
radius. This provides our numerical simulation
with a worst case scenario for differential drag
forces on relative motion.

Figure 3.7 illustrates the computed differen-
tial atmospheric drag accelerations for LEO to
GEO orbit, with the separation distances rang-
ing from 10–1000 meters. Because all satel-
lites are essentially in circular orbits (as seen
by inertial frame), the inertial velocity is essen-
tially constant here. Thus, the differential at-
mospheric disturbance will not depend on the
spacecraft separation distant. Rather, it only
depends on the orbit altitude. Note that the
Standard atmosphere model used only provided
data up to a height of 1000 meters. Beyond that
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Figure 3.7: Contour Plots of Differential Atmospheric Drag Acceleration in log10(m/s2) vs. Separation
Distance and Altitude

the atmosphere is modeled to simply decay to
zero exponentially.

3.4 Differential Solar
Radiation Pressure

Solar radiation drag is created by having the
sun’s light reflect of the spacecraft. Through
momentum conservation, a small force is ex-
erted onto the craft. The magnitude of this
force depends on the apparent size and reflectiv-
ity of the spacecraft. To model the solar radia-
tion pressure we will use a spherical spacecraft
model. The equation for this model is shown
below:23

aR = −CR
AΦR

mcR3
(3.26)

Where A is the cross-sectional area facing the
sun, and Φ is the solar constant. Also, m is the
spacecraft mass, c is the speed of light, and CR

is the pressure radiation coefficient. Lastly, the
vector R is the inertial vector pointing from the
sun to the planet you are orbiting in AU, while
R is simply its magnitude. In this part of the
equation, it is assumed that there is a quadratic
drop in radiation pressure as you increase your

distance past 1 AU, which is the distance from
the Earth to the Sun. Without loss of general-
ity, for our simulation we will choose a vector
in vernal equinox direction. The motion of all
satellites considered is insignificant here com-
pared to the size of the Earth/Sun inertial po-
sition vector.

The other variables in the equation are sim-
ply constants. For cross-sectional area A and
mass m, the same values are used as for the
drag force calculation. The pressure radiation
coefficient is taken to be CR = 1.3 from the av-
erage value based on recent data.23 The solar
constant Φ is 1372.5398 W/m2 and the speed
of light is c =2.997 m/s.

Figure 3.8 illustrates the resulting differen-
tial solar radiation acceleration values. Because
the solar radiation drag does not depend on
the satellite position about the Earth (ignor-
ing the Earth shadowing effect), this value does
not change with varying orbit altitudes or sep-
aration distances.

3.5 Overview of Dominant
Perturbations Zones

The previous three sections discussed the dif-
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ferential perturbations due to J2 perturbations,
atmospheric drag, as well as solar radiation
drag. In all cases the craft are assumed to have
a mass of m = 50 kg, and a nominal radius of
0.5 meter.

Figure 3.9 provides an overview of altitude
and separation distance zones showing which
perturbation is the most significant for a par-
ticular zone. Traditional formation flying ap-
plications treat the J2 perturbation as the
dominant disturbance of the formation geom-
etry.24–26 Here the craft are assumed to be of
equal type and build. However, even if all craft
have the same shape, different orientations can
cause significant differential atmospheric drag
in LEO regimes. Figure 3.9 shows that for con-
ditions used in this study orbits the differential
atmospheric drag will dominates at LEO up to
separation distances of 350 meters. As the or-
bit altitude is increased to about 500 km, the
differential atmospheric drag dominant zones
vanish. For large separation distances at LEO
the differential J2 perturbation becomes domi-
nant, even if differential spacecraft attitudes are
considered. This tendency is expected because
the differential J2 perturbation increases with

separation distance, while the differential atmo-
spheric drag does not.

As the considered orbit altitudes is increased
to Medium Earth Orbits (MEO) and geosta-
tionary orbits (GEO), the differential J2 per-
turbation is decreased. The further away from
Earth the spacecraft is, the more the Earth’s
gravitational potential begins to resemble that
of a point-mass. This study uses a worst case
differential solar radiation perturbation which
does not change with orbit altitude. At high
Earth orbit regions, which will typically be con-
sidered in this study for charged spacecraft mis-
sions, the differential solar radiation pressure is
the largest perturbations even out to 1000 me-
ter separation distances.

3.6 Earth Magnetic Lorentz
Force

Lastly we want to explore the effects of
Earth’s magnetic field on our spacecraft. Be-
cause we will be generating a significant amount
of charge or voltage to compensate for these
orbital disturbances, that charge will in turn
create an acceleration due to Earth’s magnetic
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field. This acceleration or force is known as the
Lorentz Force and is written in equation 3.27
from basic physics.

F = q ṙ ×B (3.27)

In this equation q is the charge generated by
the craft in Coulombs, ṙ is the inertial velocity
vector of the spacecraft in m/s, and B is the
inertial magnetic field vector of the Earth in
units of Tesla, T .

The Earths magnetic field generally resem-
bles the field around a magnetized sphere, or a
tilted dipole seen in Figure 3.11. As of 1999,
the dipole axis was tilted approximately 11.5o

from the spin axis, and drifting approximately
0.2o/yr. Its strength at the Earths surface
varies from approximately 30000nT near the
equator to 60000nT near the poles. Further,
there exists a low magnetic intensity field at
approximately 25o S and 45o W known as the
Brazilian Anomaly. A high exists at 10o N and
100o E, and the two of these together suggest
that not only is the dipole axis tilted, but it
does not quite pass through the center of the
Earth.27

The accepted model for Earths magnetic field
is the International Geomagnetic Reference

1 Introduction

In controlling satellites, one viable method of stabilization and control is the use of Earth’s magnetic
field. There are obvious advantages and disadvantages to this method. The controllers can be small
and do not deteriorate over time, but they also can only produce torques perpendicular to the local
magnetic field. An in depth analysis of this problem can be found in the thesis “A Nonlinear
Magnetic Controller for Three-Axis Stability of Nanosatellites” by Kristin Makovec.1 The purpose
of this paper is to present a model of Earth’s magnetic field such that further analysis of this
method of control could be completed.

The Earth’s magnetic field generally resembles the field around a magnetized sphere, or a tilted
dipole seen in Figure 1 below. As of 1999, the dipole axis was tilted approximately 11.5◦ from
the spin axis, and drifting approximately 0.2◦/yr. Its strength at the Earth’s surface varies from
approximately 30000nT near the equator to 60000nT near the poles. Further, there exists a low
magnetic intensity field at approximately 25◦S and 45◦W known as the Brazilian Anomaly. A high
exists at 10◦N and 100◦E, and the two of these together suggest that not only is the dipole axis
tilted, but it does not quite pass through the center of the Earth.1
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2.2 Origin and Effects of the Earth’s Magnetic Field

The geomagnetic field is described in detail in NASA Technical Report SP-8017,1 as well
as by Wertz,46 Campbell,6 and Thompson.42 A description of the geomagnetic field, its
characteristics, and variations follows.

2.2.1 Geomagnetic Field

The magnetic field around the Earth resembles that of a uniformly magnetized sphere, or a
dipole, which is tilted as shown in Figure 2.2. The fact that it approximates a tilted dipole
was discovered in 1600 by William Gilbert, and was published in his treatise De Magnete.13

In 1635, Gellibrand was the first to show that the geomagnetic field is both time and position
dependent.42

m̂

Spin Axis

11.5◦

Magnetic Axis

Magnetic
Field Lines

Figure 2.2: Magnetic Field Model

The strength of the magnetic field is approximately 30000 nT at the equator and 60000 nT
at the poles on the surface of the Earth, as mentioned in the Geological Survey of Canada.12

The magnetic dipole axis, designated as m̂ in Figure 2.2, is located at 79.8◦ N latitude
and 107.0◦ W longitude, in the year 1999. This location is near the Ellef Rignes Island in
Canada, and is approximately 700 miles from the geographic North Pole. The magnetic
dipole axis is currently at an inclination angle of 11.5◦ with the equatorial plane. The axis
is drifting westward at about 0.2 ◦/year, and the strength is decreasing by 0.05% per year.

Figure 1: Magnetic Field Model1

1.1 Modeling the magnetic field

The accepted model for Earth’s magnetic field is the International Geomagnetic Reference Field,
put forth by the International Association of Geomagnetism and Aeronomy (IAGA), and is the
central topic of this paper. An overview of this model can be found on the website of the IAGA’s
Working Group V-MOD.2

3

Figure 3.11: Earth Magnetic Field Model.

Field, put forth by the International Associa-
tion of Geomagnetism and Aeronomy (IAGA).
An overview of this model can be found on the
website of the IAGAs Working Group V-MOD.∗

The IGRF is essentially a set of Gaussian co-

∗http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
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efficients, gmn and hmn , that are put forth ev-
ery 5 years by IAGA for use in a spherical har-
monic model. At each of these epoch years, the
group considers several proposals and typically
adopts a compromise that best fits the data
available. The coefficients for a given epoch
year are referred to by IGRF and then the year,
as in IGRF2000. The model includes both the
coefficients for the epoch year and secular vari-
ation variables, which track the change of these
coefficients in nano-Tessla per year. These secu-
lar variation coefficients are used to extrapolate
the Gaussian coefficients to the date in ques-
tion. Once data becomes available about the
actual magnetic field for a given epoch year,
the model is adjusted and becomes the Defini-
tive Geomagnetic Reference Field, or DGRF.
Typically the IGRF consists of 120 coefficients
for each epoch year, with 80 secular variation
coefficients. However, due to unprecedented ge-
omagnetic data available, the IAGA released a
new set of values for IGRF2000 in July 2003
in the 9th-generation IGRF. This new model
expanded to increase the precision of the coef-
ficients to one-tenth of a nano-Tessla (up from
one nano-Tessla), and increased the number of
coefficients to degree 13 (rather than 10).

For a reference case, we pick a longitude of
about -100 degrees and a latitude of 10 degrees
south, the Brazilian Anomaly. As the orbit al-
titude as swept, the magnetic field strength is
computing for altitudes over this location to de-
termine worst case conditions. For the days
variable, we will pick mid-year 2005 which is
about 5.5 ∗ 365 days. This will output the cur-
rent magnetic field vector for a given radial dis-
tance. The velocity vector ṙ is to be taken
as the circular velocity at the given altitude.
Lastly, the voltage of the spacecraft and the or-
bit altitude are swept. The altitude range will
be the same as for the previous disturbance ac-
celeration cases. The voltage will be swept from
101 to 108 volts in order to supply force data
for a broad range of voltages. The Lorentz ac-
celeration for a 50 kg craft is then plotted on
a contour plot in Figure 3.10. Also note that
the contour plot is using the same contour color
scale as in the previous disturbance acceleration

study cases.
From the figure we can see that for reasonable

voltages on the order of kilovolts to hundreds of
kilovolts, the spacecraft will experience acceler-
ations about two orders of magnitude below the
expected disturbance accelerations due to the
perturbations. This suggests that even though
this force is small, it is still there and must be
considered in higher fidelity simulations. Also
notice that the accelerations become relatively
high when the voltage increases to 108 volts,
even higher than the disturbance accelerations.
This can become a factor if your craft are rel-
atively far apart and a much higher voltage is
needed to compensate for a disturbance.
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Chapter 4

Charged Spacecraft Mission Concepts

This chapter discusses in detail 3 different
charged spacecraft mission concepts and eval-
uates the necessary charge levels to be able to
compensate for the differential orbital perturba-
tions. When possible, the applications of these
concepts is the space-based radar interferome-
try problem. Here the sensor satellites are ide-
ally placed in configurations with circular pro-
jections in the local horizontal plane. The last
section discusses further Coulomb spacecraft
mission concepts which were developed after
evaluating the expected plasma Debye lengths
for different orbit altitude regions.

4.1 Spacecraft Voltage
Computation

The charges qi are the physical quantities
which determine the Coulomb force magnitude
Eq. (2.3). However, when implementing such
spacecraft charges, the technical concern will
be the charge density (voltage) across the craft.
The higher the voltage, the more challenging
it will be to implement any charge control law.
Thus, this study evaluates what the necessary
spacecraft voltages/charge levels are to com-
pensate for differential orbital perturbations.
Note that the Coulomb forces are not sized here
to compensate for the total orbital perturba-
tion. In fact, it is impossible to change the in-
ertial momentum of the charged satellite clus-
ter using internal Coulomb forces. Rather, the
Coulomb forces are sized such that they will be
able to compensate for the differential pertur-
bations which would cause the formation to to

change shape, size or orientation.
Unless noted otherwise, the typical spacecraft

is assumed to be spherical in shape, have a ra-
dius of r = 0.5 meters, and a mass ofm = 50 kg.
The differential perturbation levels are taken
from the conservative worst case results dis-
cussed in Chapter 3. Once a required space-
craft charge qi is computed, then the equivalent
spacecraft voltage is evaluated using

Vi = kc
qi
r

(4.1)

where kc is the Coulomb constant. This for-
mula assumes the charge is homogeneously dis-
tributed across a sphere of radius r. How to
compute the required spacecraft charge qi levels
depends on the mission scenario being consid-
ered. This computation is outlined in detail in
each of the following sections.

4.2 Free-Flying Formation
Concept

4.2.1 Formation Description

Let us first consider a mission scenario where
all charged spacecraft are flying within each
others electrostatic spheres of influences. The
spacecraft formation is designed such that the
nominal geometry are control-free solutions of
the relative equations of motion. Any formation
flying errors relative to the formation center of
mass will then be controlled using the electro-
static (Coulomb) forces. For example, consider
the typical formation flying configuration where
all the satellites are flying in bounded elliptical
relative orbits with circular projections in the

25



ı̂r

ı̂θ

ı̂h

rc

x

y

z

ρi

ρj

ρij

Figure 4.1: Coulomb Spacecraft Formation Illus-
tration

local horizontal plane. If the relative orbit di-
mension is reduced to dozens to hundreds of
meters, then the electrostatic field of one satel-
lite will influence the motion of all other craft
within this formation. This concept is illus-
trated in Figure 4.1. In this scenario a single
craft is able to interact with all other formation
craft to produce the required Coulomb force.
This provides a very complex dynamical sys-
tem. Let n =

√
µ/a3 be the mean orbital rate

of the circular chief motion, then the CW equa-
tions are given by:12–14

ẍ− 2nẏ − 3n2x = αx (4.2a)
ÿ + 2nẋ = αy (4.2b)

z̈ + n2z = αz (4.2c)

If only Coulomb forces are perturbing the Kep-
lerian orbital motion, then the disturbance ac-
celeration vector α is given by

α=

Hαx

αy

αz

 = − kc

mi

N∑
j=1,j 6=i

qiqj
ρ3

ij

ρije
−

ρij
λd (4.3)

where ρij = ρj − ρi. The relative equations
of motion in Eq. (4.2) are strongly coupled
and highly nonlinear. This makes finding feed-
back stabilizing control laws a very challeng-
ing task. Some early Coulomb craft feedback
control law strategies are discussed in Refer-
ences 28–30 which attempt to stabilize the mo-
tion of a single charged craft relative to other
charged craft within the formation.

The purpose of this study is to investigate
necessary spacecraft charge levels to compen-
sate for differential orbital perturbations. The
nominal formation geometry is assumed to be
a control free solution. Analytical solutions to
the CW equations are well known and have been
applied to the formation flying problem.15,31–33

Control free solutions of relative orbits exploit-
ing the mean J2 perturbations are discussed
in References 24, 28, 34. To size the minimum
spacecraft charge level to maintain a formation
shape, the magnitude of the local differential
orbital perturbations must be considered. Note
that any final feedback strategy would require
charge levels higher than those discussed in this
chapter.

4.2.2 Minimum Maintenance
Voltage Computation

To compute the worst case spacecraft voltage
to compensate for differential orbital perturba-
tions, we study the disturbance accelerations
acting on a single spacecraft within this forma-
tion over one orbit period. Assume the forma-
tion contains N spacecraft of essentially equal
type and build. Let us define the L = N − 1
dimensional vector charge product vector Q as

Q =
(
Qi1 Qi2 · · · Qij · · · QiN

)T (4.4)

with i 6= j and where

Qij = qiqj (4.5)

The parameters qi and qj are the charge levels of
the ith and jth spacecraft respectively. Further,
let us define the 3× L matrix [A(t)] as

[A(t)] =
[

ρi1

ρ3
i1
e
− ρi1

λd · · · ρij

ρ3
ij
e
−

ρij
λd · · · ρiN

ρ3
iN
e
− ρiN

λd

]
(4.6)
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with i 6= j. Note that the space plasma in-
fluence of the electrostatic field generation has
been included in this [A(t)] definition. The ac-
tual control acceleration αi experienced by the
ith spacecraft is

αi = − kc

mi
[A(t)]Q (4.7)

Thus, to compensate for the a disturbance ac-
celeration ad, we set it equal to the control ac-
celeration and solve for the charge product vec-
tor Q.

Q = −mi

kc
[A(t)]†ad (4.8)

Note that this disturbance acceleration is com-
puted relative to the drifting formation center
of mass as outlined in Chapter 3. Using the
pseudo-inverse of the rectangular matrix [A(t)]
provides the minimum norm solution of the
charge product vector. The charge of the ith

spacecraft whose relative motion is being con-
trol is computed using

qi =
√

max(|Qij |) (4.9)

4.2.3 Numerical Sweeps of
Maintenance Voltage

To parameterize a family of Coulomb forma-
tion, the following scenario is used. Keeping
space-based radar interferometry missions in
mind, the analytical solution to the CW equa-
tions in Eq. (3.19) are used to setup a Coulomb
formation of N craft. In particular, the circu-
lar projection condition B0 = 2A0 and α = β
is enforced to yield circular formations as seen
by an Earth observer. The N craft are spaced
equally along the relative orbit as illustrated by
Figure 4.2. The constant separation angle is
ϕ = 2π/N .

To determine the disturbance acceleration ad

on the ith craft, this craft is allowed to per-
form a complete orbit about the Earth. The
N − 1 remaining satellites are held in equiv-
alent relative orbit positions compared to this
ith craft to maintain the constant separation an-
gles ϕ. Thus, at any instance in this simulation,

ı̂r

ı̂θ

ı̂h

ϕ
ϕ

ϕ
ϕ

ϕ

ϕ

ith craft

circular projection
in Local Horizontal Plane

Bounded Analytical
Hill Frame Orbit

Figure 4.2: Relative Orbit Geometry Setup Illus-
tration with a 6 Craft Formation.

the formation geometry satisfies the linearized
bounded motion conditions. As the craft of in-
terest completes its orbit, the true inertial posi-
tion vectors ri computed for all craft to deter-
mine the differential perturbation accelerations
relative to the drifting formation center of mass.
For a given orbit size (determined through A0)
and orbit altitude), the corresponding maxi-
mum required voltage is recorded.

Chapter 2 discusses the expected mean De-
bye lengths at different orbit altitudes. The
only regions which are found to be feasible for
Coulomb spacecraft formation flying were or-
bit radii greater than about 6 Re up to GEO
altitudes. Inside this radius the Van Allen radi-
ation belts, as well as the dense, cold plasma en-
vironments of LEO altitudes yielded extremely
small Debye lengths of millimeters to centime-
ters. Outside the Van Allen radiation belts the
Debye length were found to vary from 100 me-
ters up to 500–1000 meters, depending on the
solar activities.

To perform numerical sweeps of required
spacecraft voltage levels to compensate for dif-
ferential orbital perturbations, all simulations
use a GEO altitude. At lower HEO altitudes
the Debye lengths are found to be very similar
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Figure 4.3: Contour Plots of Voltage in log10(V ) vs. Formation Size (A0) and Debye Length for All
Differential Perturbations. The Formation Consists of 2 and 3 Craft at GEO.
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to the GEO altitude Debye lengths. Thus, nu-
merical sweeps are performed where the Debye
length is varied, as well as the formation size.
At HEO altitudes the differential atmospheric
disturbance are negligible. While the differen-
tial solar radiation pressure is the largest, the
differential J2 perturbations were included in
these sweeps as well. Figures 4.3 and 4.4 il-
lustrate contour plots of the resulting required
spacecraft voltages. The results show that for
separation distance of dozens of meters, the re-
quired voltages for the 0.5 meter radius craft is
in the 10’s of kilovolt level. To compensate for
the separation distances of 100’s of meters, the
required voltage quickly increase into 100’s of
kilovolt levels.
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1000 m

Figure 4.5: Voltage vs. Number of Craft at GEO.

Four different formation scenarios are stud-
ied where N is either 2, 3, 4 or 5. The results
also show that the required voltage is decreased
are more craft are present. To illustrate this
effect, Figure 4.5 illustrates the required volt-
age level for all spacecraft craft number cases
and a Debye length of 500 meters. Increasing
the formation craft number does from 2 to 5
craft have reduce the required voltage by 2 to
3 fold. However, this reduction is no sufficient
to be able to compensate for very small Debye
lengths.

4.3 Gluon Spacecraft Concept

Next we discuss a satellite formation in which
there is a massive satellite in the center, called
Gluon. The deputy satellites are assumed to be
in a bounded relative orbit around the Gluon
or chief satellite. The main idea behind this
type of formation is to have a dedicated gluon
which can charge up to very high values. As a
result, the deputy satellites can achieve a given
inter-satellite control force using a much smaller
charge level. The gluon is also much heavier
and larger in size than the deputy. Because
the deputy charge levels is relatively small, their
mutual interactions can be neglected for 1st or-
der control studies. This contrasts with the
very coupled and complex dynamics of the pre-
viously discussed Coulomb formations.

In order to accommodate high charge and
still stay with in a acceptable level of voltage,
the gluon will have a large surface area. Due
to the significant difference in mass and surface
area between the gluon and deputy satellite, the
solar drag, J2 effect and atmospheric drag expe-
rienced by them will be different. In this section
we study the effect of this differential drag and
differential J2 effect, and find the approximate
magnitude of Coulomb force needed to compen-
sate for this drag.

4.3.1 Gluon Spacecraft Layout

For this study, we consider only one deputy
satellite and gluon as shown in Figure 4.6. The
gluon has a constant core mass and a large shell,
supported by 8 thin cylindrical columns. The
large shell helps in distributing the charge, thus
reducing the voltage. The shell and its support
structure are assumed to be made of Aluminum
(or any light metal). The deputy satellite is
assumed to be spherical with a fixed radius r1
and mass m1. Note, the size of the shell in the
gluon is varied as part of the study. Hence, the
mass of the gluon is not fixed and depends on
the radius of the craft

m2 = mc +
(
8[2πrh(r2 − rc)∆h] + 4πr22∆s

)
ρal

(4.10)
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ô
r

ı̂r
ı̂θ

ı̂h

d

m1

m2

Gluon Satellite

Deputy Satellite

Figure 4.6: A simple gluon and deputy satellite
illustration.

Here r2, rc and rh are the radii of the shell, core
mass and thin cylindrical columns, respectively.
∆s and ∆h denote the thickness of the shell
and cylindrical column, and ρal is the density
of Aluminum.

Initially, we investigate the various sizes
(radii) of gluon and deputy that will satisfy
the charge requirements while staying with in
the permissible voltage levels. The relationship
between voltage V and charge q of a spherical
body of radius r is given by

V = kc
q

r
(4.11)

where kc is the Coulomb constant. Figure 4.7
illustrates the voltage-charge relationship in

Eq. (4.11) for spherical bodies of different radii.
The voltage limit for the deputy satellite is fixed
as 10 kV and the corresponding charge carried
by the deputy is studied for different deputy
radii from the graph in Figure 4.7. A deputy of
radius 0.5m can carry about 0.5561µC of charge
and this is fixed as the size of the deputy. The
gluon is dedicated for carrying higher charge
and does not carry any other critical equipment
or component. Hence, we can assume that it
can charge up to a high voltage, say 10 times
the maximum voltage of the deputy (100 kV).
Fixing the radius of the gluon is not as straight
forward as that of the deputy. We will have to
consider certain trade offs. The larger the size
of the gluon, higher is the amount of charge
it can carry and still stay with in the maxi-
mum allowable voltage. But, large gluon sizes
might result in higher differential perturbations
between the gluon and deputy which has to be
compensated using Coulomb forces. Therefore,
we do not fix the size of the gluon at present.
The relationship between the gluon radius and
differential perturbation will be studied in the
following sections.

4.3.2 Voltage Requirements

In this section, we find an expression for the
amount of Coulomb force which will keep the
formation from drifting due to the differential
perturbation. The voltages on the gluon and
deputy can be calculated from the magnitude
of the Coulomb force required. Consider the
Figure 4.8, let F1 and F2 be the external dis-
turbance force acting on the deputy and gluon,
respectively, and FQ be the Coulomb force. The
equation of motion of the two satellites are
given as

FQ + F1 = m1r̈1 = m1(r̈c + ρ̈1) (4.12a)
−FQ + F2 = m2r̈2 = m2(r̈c + ρ̈2) (4.12b)

where rc is the inertial position vector of the
center of mass, and, ρ1 and ρ2 are the position
vectors of the deputy and gluon with respect to
the center of mass, respectively.

The net effect of the Coulomb forces on the
center of mass is zero and its equation of motion
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Figure 4.8: A simple gluon and deputy satellite
illustration.

is given by

(m1 +m2)r̈c = F1 + F2 (4.13)

In order to keep the formation from drifting,
we should generate a Coulomb force FQ, which
will make ρ̈1 and ρ̈2 go to zero. By setting ρ̈1

as zero in Eq. (4.12a) and solving for FQ, we
get

FQ = −F1 +m1r̈1 (4.14)

In Eq. (4.14), Substituting for F1 from the cen-
ter of mass equation in Eq. (4.13), we get

FQ = − m2

m1 +m2
F1 +

m1

m1 +m2
F2 (4.15)

The external forces, F1 and F2, in Eq. (4.15)
can be rewritten in terms of acceleration as

FQ =
m1m2

m1 +m2
(a2 − a1) (4.16)

where, a2 and a2 are the inertial accelerations
due to the external disturbance force. By writ-
ing out the full expression for the Coulomb force
in Eq. (4.16) and equating the magnitudes of
the force, we get

kc
q1q2e

“
−d
λd

”
d2

=
m1m2

m1 +m2
ad (4.17)
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where ad is the differential acceleration, λd

is the Debye length, d is the separation dis-
tance between the satellites and, q1 and q2
are the charges of deputy and gluon respec-
tively. By using the voltage-charge relationship
in Eq. 4.11, we rewrite Eq. 4.17 as

r1r2V1V2e

“
−d
λd

”
kcd2

=
m1m2

m1 +m2
ad (4.18)

In general, the voltage on the gluon will be fixed
and the voltage on the deputy will be varied
to compensate for the differential drag. But,
in this paper we have fixed the voltage of the
deputy as 10 kV (maximum permissible) and
varied the gluon voltage to see if it is below
the available voltage. This is because the gluon
size has not been fixed and we are interested
in studying the gluon voltage-size and differ-
ential perturbation-size relationships. Solving
Eq. 4.18 for V2, we get

V2 =
m1m2

m1 +m2

kcd
2ad

r1r2V1e

“
−d
λd

” (4.19)

4.3.3 Differential Perturbations for
Variable Gluon Radius

Both the deputy satellite and gluon expe-
rience perturbations due to solar drag, atmo-
spheric drag and J2 effect. But, these pertur-
bations are not equal in magnitude and cause
a net force which may result in the drifting of
the satellite formation. This differential per-
turbation depends on the mass, surface area
and separation distance between the gluon and
deputy. In an effort to study this dependence,
we vary the gluon radius and separation dis-
tance and study the resulting differential per-
turbation. The satellites are assumed to at
GEO (fixed altitude of 35000 m), where it has
been estimated that the Debye length varies
from 100 m to 500 m. We are not varying the
Debye length at present and taking it to be a
fixed value of 500 m.

Figure 4.9(a) shows the contours of the differ-
ential acceleration due to differential solar drag
between the gluon and the deputy at GEO for

different gluon radius and separation distance.
The gluon radius has been varied from 2 m to
10 m, and the separation distance from 10 m
to 1000 m. It can be observed from the fig-
ure that the differential acceleration does not
depend on the separation distance, but gradu-
ally increases as the gluon radius is increased.
Contours of required gluon voltage V2 to com-
pensate for the differential solar radiation drag,
assuming a fixed deputy voltage V1 (10 kV), is
shown in Figure 4.9(b). Even though the dif-
ferential solar radiation drag is less for smaller
gluon radii, the voltage needed will increase be-
cause the smaller radii causes a higher charge
density. After reaching a low around the 5 me-
ter radius, there is a gentle increase in required
voltage needed due to the increasing differential
solar radiation perturbation.

Figure 4.10(a) shows the contours of the dif-
ferential acceleration due to differential J2 effect
between the gluon and the deputy at GEO for
different gluon radius and separation distance.
It can be seen from the figure that the differen-
tial acceleration depends only on the separation
distance and not on the gluon radius. The J2

effect also depends on the orientation of the for-
mation and the differential acceleration shown
in the contour plot is the maximum possible
value for a given separation distance considering
all possible orientations. Contours of required
gluon voltage V2 needed to compensate for the
differential J2 effect, assuming a fixed deputy
voltage V1 (10 kV), is shown in Figure 4.10(b).
The voltage needed increases with separation
distance and gently decreases with increasing
gluon radii.

The effect of gluon radius on the differential
atmospheric drag has not been studied as it is
practically negligible at GEO. From the solar
drag study, we conclude that the voltage needed
at higher radius to compensate differential solar
drag is only marginally high and from the con-
tour plot studying the J2 effect, it is clear that
the larger gluon radii result in smaller voltages
that needed for compensating the differential J2

effect. Therefore, it is beneficial to have large
gluon radii and we will fix its value as 10 m.
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(a) Contours of the differential acceleration due to differential solar drag between the gluon and the deputy
at GEO for different gluon radius. The differential acceleration shown in the contours are in log scale.
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(b) Contours of voltage V2 needed on gluon to compensate for the differential solar drag, assuming a fixed
voltage V1 (10 kV) on the deputy. The voltage shown in the contours are in log scale.

Figure 4.9: Differential Solar Drag at GEO (fixed altitude of 35000 km)
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(a) Contours of the differential acceleration due to the differential J2 effect between the gluon and the deputy
at GEO for different gluon radius. The differential acceleration shown in the contours are in log scale.
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(b) Contours of voltage V2 needed on gluon to compensate for the differential J2 effect, assuming a fixed
voltage V1 (10 kV) on the deputy. The voltage shown in the contours are in log scale.

Figure 4.10: Differential J2 Effect at GEO (fixed altitude of 35000 km)
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(b) Contours of voltage V2 needed on gluon to compensate for the differential perturbation, assuming a fixed
voltage V1 (10 kV) on the deputy. The voltage shown in the contours are in log scale.

Figure 4.11: Differential Perturbation and Corresponding Voltage Requirements at GEO (fixed altitude of
35000 km)
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4.3.4 Sweeps of Required Voltages
at GEO

At GEO (fixed altitude of 35000 m), the De-
bye length varies from 100 m to 500 m. Hence,
the voltage V2 needed on the gluon to compen-
sate for the differential acceleration at this alti-
tude is studied for Debye lengths varying from
100m to 500m, and various separation distances
between the gluon and deputy. The results from
this study has been illustrated in Figure 4.11.
The contour plot in Figure 4.11(a) gives the dif-
ferential acceleration between the deputy and
gluon due to solar drag, atmospheric drag and
J2 effect. The voltage V2 needed on the gluon to
compensate for this differential acceleration, as-
suming a fixed voltage V1 (10kV) on the deputy
is shown in the contour plot in Figure 4.11(b).
For craft flying up to 30 meters apart, the volt-
ages rise up to kV levels. As the Debye lengths
are reduced, the voltage increase even further.

4.4 Static Coulomb Structure
Concept

4.4.1 Formation Description

The focus of this section is the generation of
high Earth orbit (HEO) Coulomb force struc-
tures. Coulomb force structures are a relatively
new concept consisting of several electrostati-
cally chargeable nodes with no interconnecting
struts. Instead, the node charges are carefully
controlled so that the net structure is held to-
gether solely by the Coulomb forces generated
between all the nodes. This ‘virtual structure’
can also be considered as a free-flying, constant-
shape formation of several spacecraft. Advan-
tages of Coulomb force virtual structures in-
clude low mass, low propellant usage, recon-
figurability, and self-assembly. Large virtual
structures on the order or 20–100 meters are
envisioned where controlled electrostatic force
fields are used to bond the individual craft into
a single structure. By changing control laws, it
will be possible to increase or decrease the stiff-
ness or flexibility of sub-components, or even

change the size and shape of the overall struc-
ture. This will allow for highly reconfigurable
structures which can adapt to changing mission
needs.

The uniqueness of the work in this section is
the examination of how to form specified shape
structures using a subset of all available nodes.
In addition, the plasma shielding effect is con-
sidered explicitly. An equilateral triangle struc-
ture example is given to illustrate the approach
where 5 nodes are used in the structure, 3 of
which used to satisfy the equilateral triangle
shape goal.

4.4.2 Normalized Hill’s Equations

Consider N spacecraft in a circular orbit
about the Earth. At their center of mass is the
origin of a Hill coordinate frame H : {ı̂r, ı̂θ, ı̂h}
such that the ı̂r axis points radially out from
the Earth, the ı̂θ axis points along the veloc-
ity vector of the center of mass, and the ı̂h axis
completes a right hand frame. Each of the equal
mass, spherical spacecraft can have a charge,
denoted qi, and a position vector from the ori-
gin of the Hill frame, denoted ρi. Setting the
speed and acceleration terms in Hill’s equations
to zero yields the static Coulomb structure equi-
librium equations1,28,35–37

−3n2xi =
kc

m

N∑
j=1

xi − xj

|ρi − ρj |3
qiqje

−|ρi−pj |/λd

0 =
kc

m

N∑
j=1

yi − yj

|ρi − ρj |3
qiqje

−|ρi−ρj |/λd

n2zi =
kc

m

N∑
j=1

zi − zj
|ρi − ρj |3

qiqje
−|ρi−ρj |/λd

(4.20)

where i 6= j, n is the Hill frame angular veloc-
ity, kc is Coulomb’s constant (8.99 × 109 Nm2

C2 ),
λd is the Debye length, and m is the mass of
the spacecraft. The quantities xi, yi, and zi are
the components of the ith spacecraft Hill frame
relative position vector, ρi.

To start the nondimensionalization process,
divide both sides of Eq. 4.20 by n2 and rear-
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−3xi =
N∑

j=1

xi − xj

|ρi − ρj |3

(
rs/c

n
√
mkc

Vi

) (
rs/c

n
√
mkc

Vj

)
e−|ρi−ρj |/λd

0 =
N∑

j=1

yi − yj

|ρi − ρj |3

(
rs/c

n
√
mkc

Vi

) (
rs/c

n
√
mkc

Vj

)
e−|ρi−ρj |/λd

zi =
N∑

j=1

zi − zj
|ρi − ρj |3

(
rs/c

n
√
mkc

Vi

) (
rs/c

n
√
mkc

Vj

)
e−|ρi−ρj |/λd

(4.21)

range to obtain Eq. (4.21). Note that the space-
craft voltage Vi is related to charge by

Vi =
qikc

rs/c
(4.22)

where rs/c is the spherical spacecraft radius.
Next, define nondimensional position coordi-

nates as

x̃i =
xi

Mλd

ỹi =
yi

Mλd

z̃i =
zi

Mλd

(4.23)

where M is the number of Debye lengths, and
specifies the rather arbitrarily chosen character-
istic length used for nondimensionalization. For
example, to nondimensionalize using 3 Debye
lengths, let M = 3. Applying this to Eq. 4.21
yields the final set of nondimensional, static
equilibrium, Coulomb formation equations.

−3x̃i =
N∑

j=1

x̃i − x̃j

|ρ̃i − ρ̃j |3
ṼiṼje

−M |ρ̃i−ρ̃j |

0 =
N∑

j=1

ỹi − ỹj

|ρ̃i − ρ̃j |3
ṼiṼje

−M |ρ̃i−ρ̃j |

z̃i =
N∑

j=1

z̃i − z̃j

|ρ̃i − ρ̃j |3
ṼiṼje

−M |ρ̃i−ρ̃j |

(4.24)

where

Ṽi =
rs/c

n
√
m (Mλd)

3 kc

Vi (4.25)

Finding a charge/position set (i.e. ρ̃i, Ṽi for
i = 1 . . . N) that satisfies Eq. 4.24 for a speci-
fied Debye length fraction (M) yields a family
of equilibrium formations for any altitude (n),
spacecraft radius (rs/c), spacecraft mass (m)
and Debye length (λd). The Hill frame angu-
lar velocity can be found by

n =
√
µ

r3
(4.26)

where µ is the standard gravitational parameter
for Earth (µ = 3.986× 1014 m3

s2
) and r is the cir-

cular orbit radius. Table 4.1 shows these values
for various r.

4.4.3 Application of Nondimensional
Equations to Static Formation
Solution Generation

Eq. 4.24, in conjunction with a gradient-
based optimization code, is used to determine
the relationship between spacecraft voltage,
separation distance, and Debye length for a
charged spacecraft formation with application
to Earth imaging. The formation consisted of
5 spacecraft (N = 5), and thus contains 17
free parameters - 20 parameters for spacecraft
charge and position (ρ̃i, Ṽi, i = 1 . . . 5) less
3 position parameters to satisfy the constraint
that the center of mass is at the Hill frame ori-
gin. From Eq. 4.24 it is clear that there are 15
nonlinear equations to be solved.

Formally, the problem has two additional sets
of constraints

1. 3 of the craft must form an equilateral tri-
angle as viewed from Earth
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Table 4.1: Speed information as a function of circular orbit altitude.

Altitude (km) Radius (m) Period (hr) Speed (m/s) Mean Orbit rate (rad/s)

300 6.68× 106 1.51 7720 116× 10−5

500 6.88× 106 1.58 7610 111× 10−5

2000 8.38× 106 2.12 6900 82.3× 10−5

10000 16.4× 106 5.81 4930 30.1× 10−5

35800 42.2× 106 24.0 3070 7.28× 10−5

2. The Hill frame must be the principal axes
of the static formation.38

These constraints are implemented during the
optimization process using a penalty function.
The cost function, with penalty terms, is shown
in Eq. 4.27.

J =

max
∣∣∣Ṽi

∣∣∣
min

∣∣∣Ṽi

∣∣∣
 5∑

i=1

|r̃i|

+ w1

{ ∣∣Projŷ,ẑ (ρ̃2 − ρ̃1)− L0

∣∣
+

∣∣Projŷ,ẑ (ρ̃2 − ρ̃3)− L0

∣∣
+

∣∣Projŷ,ẑ (ρ̃3 − ρ̃1)− L0

∣∣ }
+ w2

{
|Ixy|+ |Ixz|+ |Iyz|

}
(4.27)

where r̃i is

r̃i =



3x̃i +
∑N

j=1

x̃i − x̃j

|ρ̃i − ρ̃j |3
ṼiṼje

−M |ρ̃i−ρ̃j |

∑N
j=1

ỹi − ỹj

|ρ̃i − ρ̃j |3
ṼiṼje

−M |ρ̃i−ρ̃j |

−z̃i +
∑N

j=1

z̃i − z̃j

|ρ̃i − ρ̃j |3
ṼiṼje

−M |ρ̃i−ρ̃j |


(4.28)

The first term of J ensures that Hill’s equations
are satisfied (Eq. 4.24) while keeping the nondi-
mensional spacecraft charges near each other.
The second term favors an equilateral triangle
projection onto the ı̂θ–ı̂h plane with a nondi-
mensional separation distance of L0. The third
term forces the principal axis requirement. The
penalty function weights, w1 and w2 were both
chosen as 10.0.

The solution for M = 1 and L0 = 0.5 is
used to illustrate a typical solved formation
shape. The nondimensional spacecraft charges
are shown in Table 4.2.

Table 4.2: Nondimensional spacecraft voltages for
a 5 craft formation, with M = 1 and the nondi-
mensional, equilateral triangle separation distance
of L0 = 0.5.

Spacecraft No. Voltage Ṽi

1 1.2840
2 -0.7583
3 -0.7583
4 0.8841
5 1.6398

A view from Earth and a perspective view are
given in Figures 4.12 and 4.13. The color bar
is the nondimensional voltage magnitude as a
percent of the maximum (1.6398).

Because the nondimensional separation dis-
tance was constrained to 0.5 and M = 1, the
actual equilateral triangle separation distance
(between craft 1,2,3) in meters is

L∆ = .5Lλ (4.29)

4.4.4 Numerical Results

Solutions were obtained for several values of
M . Table 4.3 shows the results of converting
nondimensional, maximum spacecraft voltages
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|Ṽi|

Figure 4.12: 5 spacecraft static formation - perspective view. The formation center of mass is shown as a
small blue sphere, but of course, has no voltage associated with it.

|Ṽi|

Figure 4.13: 5 spacecraft static formation - view from Earth. The formation center of mass is shown as a
small blue sphere, but of course, has no voltage associated with it.
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back to true voltages for a variety of altitudes,
Debye lengths, and equilateral triangle sepa-
ration distances. This illustrates that to ob-
tain ‘reasonable’ equilateral spacecraft separa-
tion distances, the formation should exploit the
large Debye lengths at GEO. If spacecraft volt-
ages must stay in the 10,000 volt range, then
equilateral separation distances of about 10 me-
ters are feasible.

Table 4.3: True spacecraft voltages for a variety
of altitudes, Debye lengths, and equilateral triangle
separation distances.

Altitude (km) λd (m) L∆ (m) Vmax

300 .01 .005 2.50
.01 10.5
.02 60.9

10000 .05 .025 7.30
.05 30.5
.1 177

35800 20 10 14,100
20 59,000
40 343,000

50 12 16,100
25 55,700
50 233,000
100 1,360,000

100 12 16,100
25 48,600
50 158,000
100 660,000
200 3,830,000

Figure 4.14 Shows the maximum true space-
craft voltage as a function of both Debye length
and the L∆/Lλ ratio. The absolute voltage lev-
els can be extracted from the log scale color
bar at the right of the plot. For example,
for a Lλ = 50 meters, and an L∆ = 50 me-
ters, the maximum voltage is approximately
Vmax = 105.4 = 250, 000 volts.

4.5 Other Mission Concepts

No-control zone with very 
short Debye lengths 

Highly elliptic 
chief orbit

Formation control during 
the HEO regions

Figure 4.15: Illustration of Coulomb Formation
Control on Highly Eccentric Orbit.

4.5.1 Elliptic Chief Orbits

The cold, dense plasma environment results
in centimeter-level Debye length in LEO. This
makes using Coulomb thrusting impractical at
low orbit altitudes. Any electrostatic fields
around a craft are quickly masked by the
plasma ions and electrons shielding this charge
from other craft. The Debye lengths increase
slowly with altitude due to decreasing plasma
density. The Van-Allen radiation belts have a
higher concentration of ions, but their kinetic
energy (temperature) levels are much higher
as well. This regime is also not practical for
charged spacecraft control applications. The
plasma environment study concludes that for
orbits at 5-6 Earth radii or higher (outside the
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Figure 4.14: Maximum spacecraft voltages needed to maintain craft 1,2,3 in an equilateral triangle. The
color bar is on a log10 scale, therefore 2.5 corresponds to 102.5 volts and 6.5 corresponds to 106.5 volts.

radiation belts) the Debye length can vary be-
tween 50-500 meters, and be even higher at
GEO.

So far all the coulomb formation flying mis-
sions considered had circular chief orbit with a
constant orbit radius. Here the orbit altitude
is or is not acceptable for Coulomb control. A
new mission concept envisions using highly el-
liptical orbits as illustrated in Figure 4.15. On
these orbits the spacecraft relative motion is
only controlled near the apoapses region which
is sufficiently outside the radiation belts. Af-
ter the relative orbit errors are canceled using
Coulomb thrusting, the formation dives closer
to the planet to have smaller Earth sensing dis-
tances. No formation control is possible for
the LEO regions. The orbit must be designed
such that sufficient time is spent in the HEO re-
gion to be able to compensate for any differen-
tial perturbations the craft encountered during
their previous near-Earth passage.

This type of formation scenario can allow for
short Earth sensing distances, but can also pro-
vide long dwell time over higher latitude Earth
regions. The Russian Molniya satellites have
highly eccentric satellites to provide communi-

cation coverage to the high latitude regions of
their country. Having clusters of satellites on
eccentric orbits could provide similar long dwell
times over polar regions.

When designing such eccentric formations,
care must be taken about the formation size
contraction during the chief periapses pas-
sages. For example, consider the simple leader-
follower formation where one satellite leads an-
other satellite through the mean anomaly dif-
ference δM . All other orbit elements of these
satellites are identical. Small differences in
mean anomaly map to small differences in true
anomaly angles using

δf =
a
√

1− e2

r2
δM (4.30)

where a is the chief semi-major axis and e is
the chief eccentricity. Note that while the true
anomaly differences δf will vary over an orbit
period, the mean anomaly differences δM re-
main constant, even on highly eccentric orbits.
This allows to investigate by how much a for-
mation size will be contracted during periapses
passage. The chief orbit is designed to have an
apoapses radius of ra, and a periapses radius
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of rp. Let δy(t) be the along track separation
distance between the two craft. This state is at
apoapses

δy(ta) = raδf(ta) (4.31)

and at periapses

δy(tp) = rpδf(tp) (4.32)

Using the relationship in Eq. (4.30), as well
as the fact that δM(ta) = δM(tp), the along
track separation distance will contract/expand
according to:

δy(tp)
δy(ta)

=
ra
rp

(4.33)

Thus, if the sensor requirements state a sepa-
ration distance of 25 meters at periapses, and
the ratio ra/rp is 7 (outside of radiation belt),
then the apoapses separation distances will be
on the order of 175 meters. Such separation
distances will be challenging to implement if
the Debye length is of the order of 50-500 me-
ters. During typical conditions where λd is 80-
150 meters, the required spacecraft charge to
achieve the necessary orbit corrections will be
very large. Thus, it will be challenging to de-
sign such highly eccentric orbits where the peri-
apses separation distances are safe to fly uncon-
trolled, while the apoapses separation distances
are small enough to employ Coulomb thrusting.

4.5.2 Rendezvous and Docking
Scenarios

Flying spacecraft with small separation dis-
tances on the order of a few dozen meters is very
challenging. Using ion-engines or conventional
thrusters, there is a very large exhaust plume
impingement problem which must be addressed.
In particular, if a spacecraft is approaching an-
other for docking, and it is closing in too fast,
care must be taken when firing thrusters to slow
down the craft to avoid hitting the target craft.
Further, the large number of small orbit correc-
tions required to align the docking mechanisms
make these docking operations fuel-expensive.

Because essentially no mass is emitted with
the Coulomb thrusting concept it does not pose

any plume impingement issues. It is a very
clean method to control close proximity op-
erations. Further, the Coulomb thrusting is
the most effective for small separation distances
which are a multiple of the spacecraft dimen-
sions. The extremely low power and fuel re-
quirement, the absence of plume impingement
issues, as well as the high control bandwidth at
which the spacecraft charge can be controlled
make this technology a very strong candidate
for rendezvous and docking operations. The fol-
lowing subsections outline two charged docking
approach scenarios, as well as a potential soft-
docking application.

4.5.2.1 General-Docking Concept

The first docking concept has the target craft
equipped with several charge surfaces as illus-
trated in Figure 4.16. Each device is assumed
to be electrically isolated to avoid charge bleed-
ing through the craft. These charge devices are
arranged such that they can produce general
3D electrostatic fields in the near vicinity. The
docking craft is also controlled to have a non-
zero electrostatic potential. Interacting with
the 3D field of the target craft will allow a gen-
eral force vector to be produced on the docking
craft.

A sample docking scenario is as follows. The
docking craft positions itself ahead of the dock-
ing mechanism of the primary craft using con-
ventional propulsion systems. It is not neces-
sary to match the target craft’s velocity per-
fectly. Instead, once the docking craft is posi-
tion within a parking tolerance box, the charge
control is engaged. The docking craft maintains
a constant charge level from here on relative to
the space plasma environment. The target craft
is equipped with telemetry sensors which are
able to track the docking craft motion relative
to the docking port. After computing a con-
trol solution to carefully pull the docking craft
in, the target craft charging mechanisms are en-
gaged. The required three-dimensional control
force vector is now implemented by generat-
ing the required three-dimensional electrostatic
field around the docking craft. By measuring
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Figure 4.16: Illustration of a Coulomb docking vehicle being guiding into the docking mechanism of a
target craft using Coulomb forces.

the actual relative trajectory off the docking
craft, the control solution is updated using feed-
back control laws.

As the target craft is being pulled in, an equal
and opposite force vector is produced onto the
target craft. This will required the target craft
to have its own attitude control to maintain a
particular heading. If the target craft is much
more massive than the docking craft, then the
target craft motion is expected to be very small.

Compared to conventional thrusting, no
plume impingement issues are presented. The
final relative motion between the craft is con-
trolled using only the efficient electrostatic
forces in a clean manner. Further, if the dock-
ing craft has a differential charging across its
surface, then the 3D force fields could also be
used to control the docking craft attitude. The
high control bandwidth will allow for very pre-
cise alignment of either craft.

4.5.2.2 Nadir-Pointing Docking
Concept

If two charged craft are present, then the
Coulomb control force will only act along the
relative position vectors. Because the Coulomb

force is a formation internal force, Coulomb
forces cannot change the total inertial angu-
lar momentum. Thus, it is difficult to con-
trol the formation attitude using two electro-
static charges. However, in an orbit a rigid
spacecraft experiences differential gravitational
forces across its body due to the different dis-
tances to the Earth’s center. The resulting
torque onto the rigid body is referred to as the
gravity gradient torque.14 The nadir-pointing
charged docking scenario seeks to exploit this
external torque acting on the two-craft forma-
tion, and and use it to stabilize the in-plane
motion of the craft.

In Reference 36 the nadir pointing two-craft
Coulomb formation is identified as an equilib-
rium solution. Given two spacecraft of mass
m1 and m2 with charges q1 and q2, the charge
product must satisfy

Q∗
12 = q1q2 = −3

n2L3

kc

(
m1m2

m1 +m2

)
(4.34)

where L is the spacecraft center-to-center sepa-
ration distance. If two craft are placed distance
L apart with the charges satisfying Eq. (4.34)
and no velocity relative to the rotating center of
mass orbit frame, then the Coulomb forces will
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Figure 4.17: Euler Angles Representing the Attitude of Coulomb Tether with Respect to the Orbit Frame

cancel any relative accelerations and yield a rel-
ative equilibrium solution. In this configuration
the gravity gradient torque, given by14

τg = 3n2ôr × ([I]ôr) (4.35)

is zero because the formation principal axis is
aligned with the orbit radial unit direction vec-
tor ôr.

However, this is only an open-loop result.
With any perturbations or state errors present
this static Coulomb structure will loose its
shape and fly apart. Using a charge feedback
law, Reference 30 illustrates how the separation
distance L can be stabilized about a constant
reference length Lr. To develop a feedback law
to stabilize the separation distance using the
Coulomb forces, the small charge product vari-
ation δQ is treated as a small control variable
relative to the constant open-loop charge prod-
uct Q∗

12. The actual charge product is given
by

Q12 = Q∗
12 + δQ (4.36)

Because the charge of each craft causes a force
along the relative position vector, the Coulomb
charges can be used to control the spacecraft
separation distance. The charge feedback con-
trol law is defined as

δQ =
m1m2L

2
ref

(m1 +m2) kc
(−C1δL− C2δL̇) (4.37)

where δL is the separation distance error and
C1 and C2 are positive feedback gains. Let ψ
be the in-plane rotation angle between the two
craft as illustrated in Figure 4.17, while θ is
the out of plane angle. The resulting linearized
closed-loop equations of motion are

θ̈ + 4Ω2θ = 0

ψ̈ +
2Ω
Lref

δL̇+ 3Ω2ψ = 0

δL̈+ C2δL̇− (2ΩLref)ψ̇ + (C1 − 9Ω2)δL = 0

As is the case with rigid bodies, the out-of-plane
θ equations of motion decouple from the sepa-
ration distance δL and in-plane ψ equations of
motion. As a result, the charge feedback control
will not be able to compensate for out-of-plane
motion. However, if the feedback gains satisfy

C1 > 9n2 C2 > 0 (4.38)

then Reference 30 shows that the both the
resulting δL and ψ states are asymptotically
stabilized by the charge feedback control in
Eq. (4.37). This is achieved by only measuring
the separation distance L. The relative orbital
dynamics and the gravity gradient torque are
exploited to achieve asymptotic convergence.

With the nadir-docking concept the craft is
positioned essentially above or below the target
craft as shown in Figure 4.18. The in-plane er-
rors don’t have to be canceled perfectly. After
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Figure 4.18: Illustration the inter-spacecraft elec-
trostatic force being used to dock 2 spacecraft in a
nadir pointing formation.

engaging the Coulomb force fields, the two craft
are tied together through this virtual Coulomb
tether. Any residual in-plane motion between
the craft is then negated by controlling the sep-
aration distance and exploiting the local gravity
gradient. By developing a new charge feedback
control law to track a time varying separation
distance, it is possible to both keep the craft in-
plane alignment, as well as to carefully reduce
the separation distance. Because the Coulomb
thrusting concept does not cause plume im-
pingement issues, the approach speed can be
precisely controlled through the electric fields.
Any out-of-plane relative ψ motion between the
craft will be compensated for with conventional
thrusters as illustrated in Figure 4.18. How-
ever, because these thrusters don’t aim at the
target craft, no plume impingement issues will
arise. Thus, the nadir-docking scenario envi-
sions a hybrid control actuation scheme where

-

+

Electrostatic
Force Field

Dielectric 
Material

Figure 4.19: Illustration of a two craft using elec-
trostatic forces to perform a soft-dock.

Coulomb forces are used to stabilize both the
approach speed as well as the in-plane relative
motion, while conventional thrusters are used
to control any out-of-plane motion.

The attitude of each craft is assumed to be
controlled internally using momentum exchange
devices. Compared to the general Coulomb
docking concepts, this approach does not allow
for prescribed three-dimensional electric fields
to be formed.

4.5.2.3 Soft-Dock with Coulomb Force

A very challenging component of docking opera-
tions is the soft docking process, which very pre-
cisely moves the two craft into position for final
mechanical hard docking. During soft-dock the
two craft make physical contact, but don’t have
all the final interlocks in place. Due to Newton’s
second law, if the two craft just bump into each
other without grabbing hold, then the satellites
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will begin to drift apart again. Mechanisms em-
ployed in this process are necessarily complex
in order to provide general 6 dof motion. Typi-
cally mechanical receptor mechanisms are used
to establish initial contact, though the use of
electromagnets has also been considered. An-
other option is to use Coulomb forces to ap-
ply a small force between the two craft to keep
them together until the final interlocks are es-
tablished as illustrated in Figure 4.19. The
contact surface must consist of a dielectric ma-
terial which has sufficient insulator properties
while still allowing electrical fields to penetrate.
The electrostatic fields take less power to cre-
ate, and are more far-reaching than magnetic
fields. Further, with this approach complex
mechanism systems and associated launch mass
are avoided.
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Chapter 5

Deployment Study of Small Coulomb
Craft

Deployment will be defined as moving a
spacecraft along a desired path, or imparting
onto it a final state by the use of Coulomb
forces. Three cases are examined in this section.
First, a tutorial two-craft operation is consid-
ered. The chief vehicle is assumed to have its
own station-keeping propulsion system, while
the single deputy is free-flying. The deployment
objective is to create a rest-to-rest maneuver of
the deputy. The purpose of this study is to illus-
trate typical voltage levels required, providing
some insight into the practicality of reposition-
ing spacecraft using Coulomb forces. Second, a
multiple charge chief spacecraft is used to repo-
sition deputies in a near simultaneous maneu-
ver. A charge cycling approach, one of the novel
outcomes of this research, is exploited to permit
force-decoupled control design of the formation.
Third, the multiple charge chief is used to im-
part a desired final speed onto a deputy space-
craft without regard for the path taken.

5.1 Rest-to-Rest Motion

Consider a chief in a fixed circular orbit about
the Earth and a deputy located initially close
to the chief. The objective of the maneuver is
to reposition the deputy to a specified distance
in the Hill frame z direction as shown in Fig-
ure 5.1. The dynamic equation of motion in the
z direction is

m
(
z̈ + n2z

)
= kc

1
z2
V0V1e

− z
λd (5.1)

where m is the deputy’s mass, n is the angular
velocity of the Hill frame, kc is Coulomb’s con-
stant, d is the distance between the chief and
the deputy, λd is the Debye length, and V0 and
V1 are the voltages of the chief and deputy re-
spectively.

A bang-bang time history charge profile is
postulated and shown in Figure 5.2. The ini-
tial positive product of V0V1 causes the deputy
to move in the positive z direction. During the
second phase of the maneuver, when the charge
product is negative, the chief is attempting to
arrest the deputy motion. One interpretation
of the initial positive charge product is that of
an impulse.

z

V0

V1

deputy

chief
ı̂r

ı̂h

ı̂θ

Figure 5.1: Rest-to-rest deployment of a free-flying
deputy using a fixed orbit chief.

An optimization process was used to select
the voltage product amplitude and switch time
such that the deputy craft achieved a desired
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V0V1

Figure 5.2: Postulated time history of the product
of the deputy and chief voltages.

position with zero final speed. The deputy was
assumed to be 50kg with a radius of 0.5 meters.
It started from rest with its center 1.5 meters
from the center of the chief. Without loss of
generality, the magnitudes of V0 and V1 were
assumed equal with their signs the same during
the first phase of the maneuver and opposite
during the second phase. The charge ampli-
tude, or ”Equal Sphere Voltage” is plotted in
Figure 5.3 as a function of inverse Debye length
for three different final position values and a
range of total maneuver times. Although this
choice of abscissa seems odd, it yields a linear
relationship permitting easy extrapolation for
Debye lengths less than 2.5 meters. For easy
reference, voltages are given on the right side
of the plot corresponding to the log values that
were actually graphed. As expected, the voltage
increases with maneuver length and decreases
with increasing maneuver time. Some interest-
ing observations from this data are

1. There is a nearly linear relationship be-
tween the log of the spacecraft voltage and
the inverse of Debye length

2. The difference in log(V ) between a fast ma-
neuver (6 hours) and a slow maneuver (24
hours) is nearly invariant with respect to
Debye length and total maneuver distance.

3. The rate of voltage increase with Debye
length increases with increasing total ma-
neuver distance

4. For the specific example considered, 10kV

Deputy
craft

Chief with 4 active
charge spheres

Deputy 
trajectory

Figure 5.4: Steerable Coulomb force deployment
scenario. The chief shown has 6 charge spheres, 4 of
which are active.

charging is adequate for up to 30 meter ma-
neuvers.

It should be noted that the data of Figure 5.3 is
easily extended to any deputy mass and space-
craft radius. The process requires that the volt-
ages first be normalized to ”remove” the mass
and radius values used in the example. Next,
the new mass and radius must be applied. This
is illustrated in Eq. 5.2 where mnew and rsc,new

are the deputy radius and mass of interest. A
sample calculation is shown in Eq. 5.3 where
the new radius is 0.6 meters, the new mass is
20 kilograms and the maneuver of interest is a
10 meter repositioning in 24 hours with a Debye
length of 2.5 meters. The possible scenario is a
large, inflatable charged spacecraft.

V1,new =
(
V1

rsc√
m

) √
mnew

rsc,new
(5.2)

V1,new =
(

10000
.5√
50

) √
10
.6

= 2795.1V (5.3)

5.2 Rest-to-Rest Steered
Deployment

The focus of this study is high Earth orbit
(HEO) deployment of relatively small deputy
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Figure 5.3: Chief and deputy voltage amplitude as a function of Debye length for rest-to-rest maneuvers.

spacecraft using Coulomb forces generated be-
tween a chief satellite and the deputies, and is
depicted in Figure 5.4. It is assumed that the
chief craft has its own conventional propulsion
system, and is in a circular orbit about Earth.
Furthermore, the chief has several controllable
spherical charge surfaces. The deputy craft are
assumed to be spherical, with their own control-
lable charge capability. Deployment consists of
simultaneously repositioning the deputies from
an initial configuration near the chief to a spec-
ified end-shape, typically multiple chief radii’s
away. During deployment, the deputies re-
act against the chief, exploiting the chief’s sta-
tion keeping capability to generate accurate mo-
tions.

5.2.1 Dynamic Model

Consider a system consisting ofNd deputy craft,
and a chief containing Nc charge points. The
specific case of 3 deputies and 1 charge sphere
is shown in Fig. 5.5. The position vectors of the

Nd+Nc bodies are ordered such that p1 through
pNd

are the deputy vectors and pNd+1 through
pNd+Nc are the charge sphere vectors, all rel-
ative to the center of the chief satellite. Each
position vector has elements xi, yi and zi. Re-
ferring to the example of Fig. 5.5, the 3 deputy
craft position vectors are denoted p1 through
p3 and the chief’s charge sphere position vector
is denoted p4. The chief is assumed to be in a
circular orbit about the Earth with a Hill coor-
dinate frame at its center as shown in Fig. 5.5.
The ı̂r unit vector is pointing radially outward
from the center of the Earth and the ı̂θ axis is
in the direction of the chief’s velocity vector.
Each of the Nd + Nc bodies is assumed to be
have charge qi.

Applying the Coulomb forces to the right
side of Hills Equations, yields the system dy-
namic equations for small motions about the
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Figure 5.5: Three virtual structure nodes orbiting
the Earth illustrating the notation used in the model
development.

chief satellite and are shown in (5.4)

ẍi − 2nẏi − 3n2xi =
kc

m

Nd+Nc∑
j=1

xi − xj

d3
ij

qiqje
−

dij
λd

(5.4a)

ÿi + 2nẋi =
kc

m

Nd+Nc∑
j=1

yi − yj

d3
ij

qiqje
−

dij
λd

(5.4b)

z̈i + n2zi =
kc

m

Nd+Nc∑
j=1

zi − zj
d3

ij

qiqje
−

dij
λd

(5.4c)

for i = 1 . . . Nd, j 6= i during the summation
and dij = ‖pi − pj‖. The Hill frame angular
velocity is denoted as n and the mass of each
deputy is m. Equation (5.4) is nonlinear and re-
sults in a challenging control problem if the goal
is to simultaneously move the deputies from
initial positions near the chief to final states
away from the chief. When all the deputies are
charged, the qiqj terms limit the ability to cre-
ate arbitrary force vector directions. Further-
more, as the craft move away from each other
and the chief, the Debye length effect exponen-
tially reduces the force capability. It should be

noted that the Debye length λd can be as little
as 10 cm at low altitudes. Therefore, the abil-
ity to generate Coulomb forces between craft at
large distances is impractical. However, impart-
ing large initial velocities is still quite feasible.
At high altitudes, such as geostationary orbit
(35,800 km, n = 7.28× 10−5rad/sec), λd varies
from 75 m to 575 m. Thus, long-distance posi-
tioning capability is possible.

5.2.2 Control Strategy

The movement of one deputy is considered first,
followed by the extension to multiple deputies.
For the single deputy case, Nd = 1, (5.4) be-
comes

ẍ1 − 2nẏ1 − 3n2x1 =
kc

m

1+Nc∑
j=2

x1 − xj

d3
1j

q1qje
−

d1j
λd

(5.5a)

ÿ1 + 2nẋ1 =
kc

m

1+Nc∑
j=2

y1 − yj

d3
1j

q1qje
−

d1j
λd

(5.5b)

z̈1 + n2z1 =
kc

m

1+Nc∑
j=2

z1 − zj
d3

1j

q1qje
−

d1j
λd

(5.5c)

where d1j = ‖p1−pj‖. Assume that the charge
of the deputy, q1, is held to some nonzero, con-
stant value and that Nd = 3. Next, denote the
right sides of each equation in (5.5), specifiable
forces, using the variables fd,x, fd,y, and fd,z, or
in vector form, fd. As long as the rank of the
matrix

P =
[
(p1 − p2) (p1 − p3) . . . (p1 − p1+Nd

)
]

(5.6)

is 3, then any desired force, fd, can be applied
to the deputy. Because it is possible to gener-
ate any force vector, it is clear that a suitable
control law can now be applied depending on
the application (e.g. tracking, regulation, etc.).
For example, a simple proportional controller
with rate feedback and orbital dynamics can-
cellation is suitable for moving the deputy from
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some initial point to a final point with zero final
speed

fd =

−2nẏ1 − 3n2x1

2nẋ1

n2z1

+Kp (p1d − p1)−Kdv1

(5.7)

where Kp and Kd are 3× 3 diagonal gain ma-
trices, p1d is the desired final position of the
deputy, and v1 is the velocity of the deputy.

At this point, it is convenient to rewrite the
right side of (5.5) as fd = Bq where the jth

column of the 3×Nc matrix B is

Bj = kc (p1 − pj) ·

e
−

d1j
λd

d3
1j

 q1 (5.8)

and the Nd × 1 vector of inputs, q, is

q =


q2
q3
...

q(1+Nd)

 . (5.9)

Some comments on the number of chief charge
spheres is in order. If Nc = 3, the charge
spheres form a plane and defines a singular re-
gion where forces orthogonal to the plane can-
not be achieved. Thus, a minimum of 4 charge
spheres is needed to guarantee complete maneu-
verability of the deputy. This introduces redun-
dancy in the control law solution. This could be
handled by switching between sets of 3 charge
spheres, or by utilizing all the charge sphere as-
sets according to some optimization criteria. In
this work, a weighted least squares solution is
used. Specifically, given the desired force vec-
tor to be applied to the deputy, fd, the charge
sphere charge values are computed according to

q = W−1BT
(
BW−1BT

)−1
fd (5.10)

where W is an Nc×Nc matrix of constants used
to focus control authority onto specific charge
spheres. The identity matrix is used in the ex-
ample below.

Extending this method to multiple deputies
can be accomplished in several ways. One ap-
proach is to move each deputy to its final state

sequentially. In some applications, this may be
appropriate. However, if the goal is to have all
the deputies be at their goal points at the same
time, this would not be suitable. The orbital
dynamics quickly result in a loss of position-
ing accuracy once the Coulomb force is removed
and the deputies move according to their own
Keplerian motion. The method used in this
work is to focus control sequentially between
the participating deputies. For example, the
formation control period, denoted ∆T , would
be divided intoNd equal pieces as δT = ∆T/Nd.
During each δT only 1 deputy is charged, and
the solution to (5.10) is formed with a B ma-
trix where the p1 of (5.8) is replaced with i for
the ith deputy. It should be noted that from a
practical perspective, this assumes that: (1) the
deputy charges can be cycled from zero to the
maximum value at least 10 times faster than
δT , (2) the chief and deputies have a commu-
nication protocol that allows the chief to des-
ignate which deputy is under control, (3) the
chief can measure the deputy position vectors.

5.2.3 Example

Three deputies are considered, Nd = 3, and 6
charge spheres, Nc = 6. The goal is to move
the deputies from their initial locations, near
the chief, to a final zero speed state such that
they lie on a circle, as viewed from Earth, with
a radius of 30 meters. The deputies and charge
sphere radii are all 0.5 meters, each with a mass
of 50 kg. The initial and final coordinates of the
deputies are given in Table 5.1 along with the
coordinates of the charge spheres where Li =
3/
√

2, Lf = 30, and Lc = 2. The Debye length
is assumed to be 100 meters, and the altitude
of the chief is 35,800 km (the orbital period is
24 hours). The time that each deputy is being
controlled by the chief’s charge spheres is δT =
5 minutes and the piece-wise constant charge of
the deputies is 20,000 volts.

Fig. 5.6 shows the trajectories of all three
deputies - blue for p1, green for p2 and red for
p3. The hollow circles indicate the initial posi-
tions and the filled circles the end points. The
charge spheres are not shown. The only care
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Table 5.1: Initial and final coordinates of the
deputy craft, and the coordinates of the charge
spheres.

Position Vector x (m) y (m) z (m)

Initial p1 0 Li Li

Initial p2 0 −Li −Li

Initial p3 0 −Li Li

Final p1 0 1
2Lf

1
2
√

3
Lf

Final p2 0 0 − 1√
3
Lf

Final p3 0 −1
2Lf

1
2
√

3
Lf

p4 Lc 0 0
p5 −Lc 0 0
p6 0 Lc 0
p7 0 −Lc 0
p8 0 0 Lc

p9 0 0 −Lc

taken in selecting the initial and end points was
to inhibit significant x-axis motion. This was
done merely to create an example that could
be viewed easily on a two-dimensional plot. As
seen in Fig. 5.6 the motion in the x direction is
small compared to the y and z motion.
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Figure 5.6: Trajectories of all three deputies. The
hollow circles are the initial configuration, and the
filled circles the final positions.

Fig. 5.7 shows the charge spheres, black cir-
cles, and the trajectories of the deputy space-
craft. Again, blue denotes p1, green denotes p2,

and red denotes p3. The hollow black sphere at
the origin indicates the location of the p4 and p5

charge spheres and are outside the y − z plane.
As expected from the control strategy, the mo-
tion of the deputies is in a straight line to their
respective goals since the desired force vector,
fd is always pointed from the deputy toward its
goal. This feature may be useful in the future
for path planning.
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Figure 5.7: Trajectories of all three deputies pro-
jected onto the y − z plane. Hollow circles are the
initial positions, and the filled circles the final posi-
tions.

Fig. 5.8 shows the x, y, and z coordinates for
each deputy. The x motion is a dotted line,
the y motion a solid line, and the z motion a
dashed line in all cases. From this view it is
clear that the deputies achieve their final end
points in approximately 2 orbits (2 days).

Voltage time histories are shown in Fig. 5.9
and Fig. 5.10. It’s clear that the maximum volt-
age required is approximately 20,000 volts. It
should be noted that since the current require-
ments are extremely small, this requires very
little power compared to conventional thrusters.
The oscillatory nature of these time histories is
due to the switching, every 5 minutes, of the
control objective to a different deputy. This is
seen more clearly in the ”zoomed view” of the
p4 charge sphere shown in Fig. 5.11. It should
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Figure 5.8: Time histories of all three deputies
where in each plot the dotted line is the x coor-
dinate, the solid line is the y coordinate, and the
dashed line is the z coordinate.

be noted that the steady-state part of Fig. 5.9
and Fig. 5.10, after about 50 hours, is keeping
the deputies at the desired fixed positions, con-
stantly working to overcome the orbital forces.
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Figure 5.9: Charge sphere voltage time histories
for spheres 4,5, and 6.

5.2.4 Rest-to-Rest Deployment
Summary

A method was developed for Coulomb control
positioning of deputy spacecraft using charged
spheres attached to a chief satellite. By fo-
cusing on one deputy at a time, a linear con-
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Figure 5.10: Charge sphere voltage time histories
for spheres 7,8, and 9.
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Figure 5.11: Zoomed view of charge sphere 4 show-
ing the control authority switching.

trol solution was applied to a single deputy.
This was extended to simultaneous movement
of all the deputies by cycling the charge between
deputies. The requirement for the existence of
a control solution was given in (5.6). In practice
one should plan the trajectories such that the
deputies do not need to cross through the vol-
ume bounded by the charge spheres. This is not
a very restrictive constraint, and means that the
deputies should be moving outward from the
chief.
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5.3 Final Speed Deployment

The previous section focused on placing deputy
craft in arbitrary rest positions using a multi-
ple charge chief. This section is an extension of
that concept where the deputy is given a spec-
ified speed. The control approach is similar to
Eq. 5.7 through Eq. 5.10, with a resulting speed
time history having a first order response. A
range of possible scenarios could be exploited
including moving the deputy to the rear of the
chief, then applying the desired final speed com-
mand. A simpler case will be illustrated here
where the goal it to generate a deputy final ve-
locity having components in all three Hill frame
coordinates as shown in Eq. 5.11, at a specified
final time, tf . For t > tf the charges are set to
zero and thus the deputies motion is governed
strictly by its Keplerian orbit. The most inter-
esting result of this work is the illustration of
the trade-off between the deputy acceleration
and final time at which the final speed should
be attained.

v1d =
v1d√

3


1
1
1

 (5.11)

The control law for applying a desired final
velocity, v1d, is given in Eq. 5.12. In con-
junction with the minimum norm solution of
Eq. 5.10 for computing charges

fd =

−2nẏ1 − 3n2x1

2nẋ1

n2z1

+Kd (v1d − v1)

(5.12)

Table 5.2 shows the maximum charge, includ-
ing the deputy and the 6 multiple charge chief,
during the 0 < t < tf maneuver for several fi-
nal speeds and final times. In each case, there
exists a minimum value of ”Max. Voltage” for
each ”Final Speed” condition. As the final time
is decreased from 1 orbit, the maximum voltage
decreases until the minimum (tf , Vmax) pair is
reached. Increasing the final time beyond this
point causes the maximum voltage to increase

again. This effect is easily described by shift-
ing dominance between orbital and Coulomb
forces as the deputy moves away from the chief.
For example, when v1d is 1.0 and tf is 1.0, the
chief must apply large voltages (792V) when
t ≈ tf since the deputy has moved far from the
chief. Increasing tf beyond the minimum value
of tf = 0.5 again requires large Vmax due to the
large accelerations required to achieve v1d in a
short amount of time.

Table 5.2: Maximum charge as a function of final
speed and final time.

Final Final Max.
Speed Time Voltage
v1d tf Vmax

(m/orbit) (orbits) (Volts)

1 1.0 792
1 0.5 621
1 0.25 1,225
1 0.1 1,928

10 1.0 9,644
10 0.5 4,308
10 0.25 3,873
10 0.1 6,099

100 1.0 848,530
100 0.5 232,380
100 0.25 115,760
100 0.1 22,361

This phenomenon can also be interpreted as
establishing a limit for deputy final speed as a
function of the maximum voltage capability of
the crafts. Consider the case where the maxi-
mum voltage of either the deputy or the chief’s
charge spheres is 50kV. In addition, assume
that the desired velocity is given by Eq. 5.11,
the deputy mass is 50kg, with a radius of 0.5
meters, and is initially 3 meters from the center
of the chief. The maximum final speed is then
300 meters/orbit (≈ 3.5 mm/sec), and occurs
at roughly 1 hour into the maneuver. Holding
that speed longer requires ever increasing volt-
ages due to the dominance of orbital dynam-
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ics over Coulomb forces. Likewise, requiring
this same speed earlier in the operation requires
more voltage due to the increased accelerations
needed.

Figure 5.12 shows the first order, closed-loop
response of the deputy due to the control law of
Eq. 5.12. The shortest time constant possible
when limiting the maximum voltage to 50kV
was approximately 13 minutes. The 6 chief
sphere voltages are shown in Figure 5.13. The
transition from Coulomb dominating forces to
orbital dynamic forces is clear at approximately
0.6 hours and occurs at a distance of about 10
meters from the chief’s charge spheres.
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Figure 5.12: Speed time-history where the final
speed of 12.5 m/hour (300 m/orbit) is achieved at
tf = 1 hour.

In conclusion, final speeds can be readily im-
parted to the deputy from a multiple charge
chief spacecraft. The voltages required are
heavily dependent on both the plasma charac-
teristics, and the desired velocity vector. The
voltage levels become large if long periods of
closed-loop speed control is desired in conjunc-
tion with large speed magnitudes that take the
deputy far from the Coulomb influence of the
chief. These charge levels can be reduced by
increasing the number of charge spheres on the
chief, at the expense of increased chief complex-
ity, but not an increase in control law complex-
ity.
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Figure 5.13: Voltages of the chief’s charge spheres
when applying a final speed to the deputy of 12.5
m/hour at tf = 1 hour.

5.4 3D Spherical Charge
Study in Plasma
Environment

5.4.1 Motivation

Gauss’s law39,40 states that the net electric
flux coming out of a closed surface in a vac-
uum is directly proportional to the net charge
enclosed by the surface. Using this law it can
be shown that the electric field at any point
outside a uniformly charged conducting sphere
(solid or shell) is same as if the net charge were
concentrated at the center of the sphere (like
a point charge). This concept can be extended
while calculating the force between two charged
spheres. They can be modeled as point charges
at the center of each sphere provided the sep-
aration distance between the sphere centers is
larger than the sum of the sphere radii. At very
small separation distances the surface charge
distribution will not be even due to the induced
charge effects and the point charge model will
not hold.

The behavior of the charge particle is signif-
icantly different in a plasma environment com-
pared to vacuum. If a test point charge (posi-
tive) is placed in a uniform plasma environment,
it will attract electrons and repel the positive
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Figure 5.14: Figure illustrates the Debye Shield-
ing.

ions in the plasma. This results in the the elec-
trons gathering around the positive test charge,
which will create a shielding cloud that cancels
the effect of the test charge. Thus the electric
field strength decays much faster in plasma en-
vironment than in vacuum. This phenomenon
is called Debye shielding41,42 and is illustrated
in Figure 5.14. In Reference 41 and 42, an ex-
pression for the electric field E of a point charge
in a plasma is given and a new parameter called
the length Debye length λd is introduced.

E = kc
q

d2
e−d/λd (5.13)

At separation distances d that are greater than
the Debye length λd the electric field or poten-
tial decays exponentially and at separation dis-
tances d that are much smaller than the Debye
length the electric field is very close to the point
charge field in vacuum.

In MEO (Medium Earth orbit) and LEO
(Low Earth orbit), the Debye lengths are very
small (on the order of a few millimeters to
centimeters) and one possible application of
Coulomb force is the docking of two satellites.
Here the surface-to-surface separation distances
can become very small, while the center-to-
center separation distances remain relatively
large. The point charge model of 3D spheres
is only an approximation if the craft are in

a plasma environment with Debye shielding
present. This section will study how large the
electrostatic force magnitude model errors are
if the point charge model is used instead of the
three-dimensional charge distribution. As the
separation distances are increased, it is antici-
pated that the point charge models will become
increasingly accurate. However, what if tow
0.5 meter radius spherical spacecraft are only
0.2 meters apart, and the Debye length is 0.1
meters? Will the point charge model over- or
under-estimate the resulting electrostatic force
magnitude?

The craft are modeled as two spheres. We
study the Coulomb force between these two
spheres in close quarters in a plasma environ-
ment. The spheres are hollow shells with a large
charge surface area (similar to the Gluon craft
concept) and are porous such that the plasma
can seep into it. Thus, the environment inside
and outside the spheres is the same. However,
the charged surface section which are the closest
to each other might have a greater interaction
than the charged surface sections which are on
the opposite sides of the spheres. This is due
to the fact that the effectiveness of the charge
on the surfaces that are further away will be re-
duced because of Debye shielding. Hence, point
charge modeling of spheres based on Gauss’s
law will not give the accurate Coulomb force
acting between the spheres that are in plasma
environment. It should be noted that this prob-
lem is not very acute when the Debye lengths
are very large or when the separation distance
between the spheres is large.

5.4.2 3D Spacecraft Modeling

In this study we have discretized the surface
of the spheres into small elemental areas and the
elemental charges in these areas are considered
to be point charges. The resultant Coulomb
force between the two spheres are found by
adding, vectorially, the forces due each elemen-
tal charge that make up the spheres. While cal-
culating the forces due to the elemental charges
the effect of Debye shielding is taken into ac-
count. The net force obtained from the dis-
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cretized model is compared with that of the
the point charge model and situations in which
point charge model will fail are identified. Two
spheres in close quarters might introduce in-
duced charge separation within the sphere sur-
face. For instance, a positively charged sphere
will attract more electrons in the other sphere
to move to the surface facing the positively
charged sphere as shown in Figure 5.15. This
induced charging results in a nonuniform sur-
face charge distribution and coupled with the
Debye shielding effects can drastically change
the net effective Coulomb force. But, for the
scope of this study, we are neglecting this in-
duced charge effect and assume the spheres to
have a uniform surface charge density. This
allows us to quantify the effect of the Debye
shielding on three-dimensional spheres and de-
termine how valid the point charge models are
for small separation distances.

Charged
Sphere

Uncharged
Sphere

Induced charge
separation

Figure 5.15: Figure illustrates the induced charge
in a neutral sphere in the vicinity of a charged
sphere.

To model the homogeneously charged sur-
face, the sphere is discretized into a finite num-
ber of polygons. Consider a small elemental
area as shown in Figure 5.16 on the surface of
a sphere of radius r. The polar coordinates of
the elemental area are given by the radius r and
angles ψ and θ. The expression for the area of
this element is given by

dA = r cos(ψ)dθdψ (5.14)

Let the charge density on the surface of the
sphere be σ, then the elemental charge dq on
the elemental surface area dA can be written as

dq = σdA = σr cos(ψ)dθdψ (5.15)

Rewriting Eq. (5.15) in terms of the total charge
q carried by the sphere, we get

dq =
q

4πr2
r cos(ψ)dθdψ (5.16)

This elemental charge dq can be considered as
a point charge and its position in terms of the
cartesian coordinates (with origin at the center
of the sphere) can be written as

ρ =

xy
z

 =

r cos(ψ) cos(θ)
r cos(ψ) sin(θ)

r sin(ψ)

 (5.17)

Similarly, by varying the polar angles ψ and
θ from −90o–90o and 0o–360o, respectively, all
the discretized elemental charges and their po-
sition can be identified.

r
ψ

θ

x
y

z

Elemental Area
Position
ρ = (x,y, z)

O

x̂

ŷ
ẑ

dψ

r cos(ψ)dθ

Figure 5.16: A simple spherical surface with the
illustration of an elemental surface.

Now, let us consider two such discretized
spheres with n elemental areas in each. The
net Coulomb force acting between the spheres
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is the vector sum of the interaction of each in-
dividual elemental charge. The Coulomb force
using the discretized model can be written as

F =
n∑

i=1

n∑
j=1

kc
dqidqj

|ρj − ρi|3
(ρj − ρi) (5.18)

where kc is the Coulomb constant, dqi and ρi

are the ith elemental charge and its cartesian
position vector on sphere one, and similarly,
dqj and ρj are the jth elemental charge and its
cartesian position vector on sphere two.

The force between two spheres based on the
point charge model is given by

F = kc
q1q2
d2

(5.19)

where q1 and q2 are the respective total charges
on sphere 1 and 2, and d is the center to center
separation distance.

In order to establish acceptable mesh size (i.e.
dψ and dθ values), the Coulomb force between
two test spheres based on the discretized model
is calculated for various dψ and dθ values. Re-
call that when operating in a vacuum (i.e. ne-
glecting plasma effect) and when the induced
charge redistribution effects are neglected, the
point charge model of the sphere holds per-
fectly. Hence, the force calculated from the
discretized model is compared with the point
charge model and the percentage error is plot-
ted for various dψ and dθ values as shown in
Figure 5.17. A dψ and dθ value that resulted
in a percentage error of less than 1% is an
acceptable discretization level. Studying Fig-
ure 5.17 the dψ and dθ values are chosen as
10o or 0.17 radians which results in a percent-
age discretization error of 0.46% (well with in
1%).

5.4.3 Discretized Model in Plasma
Environment

The Coulomb force experienced by a test
charge dq which is at a distance d from a point
charge q in a plasma environment is given by

F = kc
q dq
d2

e
−d
λd (5.20)

where λd is the Debye length. It can be inferred
from Eq. (5.20) that as the separation distance
d increases the Coulomb force exponentially de-
cays, and the decay is more severe when d is
greater than the Debye Length λd.

A charged sphere in a plasma environment
modeled as an equivalent point charge at the
center of the sphere might not give accurate re-
sults depending on the spacecraft radii, separa-
tion distances, and the Debye length value. At
small Debye lengths, the charge on the surface
sections that are facing each other might have
separation distances smaller than the Debye
length. This yields a greater interaction than
the charge on the opposite surface sections of
the spheres because their attraction/repulsion
might be masked due the Debye shielding level.
In this study we have modeled the spheres as
porous shells and assumed that the plasma can
seep through. This assumption might lead us
to believe that the point charge approximations
will be well with in acceptable limits. This
is not the case for all situations. When the
separation distances are comparable to the ra-
dius of the spheres and at Debye lengths that
are less than the separation distances, then
the Coulomb force computed by replacing the
spheres with equivalent point charges at the
center would have acutely decayed. But, in re-
ality the charges on the surface of the sphere
that are closest to each other might be well with
in the Debye length and their interaction might
result in a net Coulomb force that is signifi-
cantly higher than the force calculated using
the point charge model. Thus, our main aim
of this study is to identify those regions of sep-
aration distance and Debye lengths where the
point charge model fails and discretized surface
model should be used instead.

The Coulomb force between two spheres in
plasma environment is given using the dis-
cretized model as

Fd =
n∑

i=1

n∑
j=1

kc
dqidqj

|ρj − ρi|3
(ρj − ρi)e

−|ρj−ρi|
λd

(5.21)

where the definition of dqi, ρi, dqj and ρj are
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Figure 5.17: Graph showing the percentage error in the Coulomb force calculated using the point charge
model and the discretized surface model for two spheres for different discretization mesh size.
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the same as in Eq. (5.18). This process is illus-
trated in Figure 5.18. The force between two
spheres in a plasma environment is based on
the point charge model is given by

Fp = kc
q1q2
d2

e
−d
λd (5.22)

where q1 and q2 are the respective total charges
on sphere 1 and 2, and d is the center to cen-
ter separation distance. The percentage error
between the two methods is calculated as

Error =
|Fp − Fd|
|Fp|

100% (5.23)

The Coulomb force computed using the point
charge model and the discretized model are
calculated for various combinations of radii-
separation distances ratios and separation dis-
tance to Debye length ratios. For each case
the percentage error is calculated. Figure 5.19
shows the contour plots for the percentage error
in the Coulomb force calculated using the point
charge model and the discretized surface model
for two spheres under plasma screening.

In Figure 5.19(a), the separation distance-
Debye length ratio ( d

λd
) is varied from 0.1 to

1. It can be observed from this plot that at
high separation distance-radius ratio (d

r ), the
difference between the point charge model and
discretized model is insignificant even when the
Debye lengths are comparable to the separation
distance (i.e. at high d

λd
ratios). There is con-

siderable difference when separation distance-
Debye length ratio ( d

λd
) is low and the Debye

lengths are comparable to the separation dis-
tance, and in this region the Coulomb force due
to the discretized model is higher than the point
charge model. This phenomenon is further illus-
trated in Figure 5.19(b) in which the separation
distance-Debye length ratio ( d

λd
) varies from 0.1

to 5. At separation distances which are much
greater than the Debye lengths and at low sep-
aration distance-radius ratios (d

r ) the difference
between the models is more than 100%.

From this study it can be concluded that
for two sphere that are in plasma the environ-
ment the difference between the force calculated
using the point charge model and discretized

model is negligible, provided the separation dis-
tances are large compared to the radius of the
sphere and the Debye length is very large com-
pared to the separation distance. The point
charge model only fails at separation distances
that are close to the radius of the sphere and
when the Debye lengths are comparable to or
greater than the separation distance. In these
situations the point charge model severely over-
estimates the influence of the plasma shielding.
Using our old example of 2 craft with 0.5 me-
ter radii, assume the surfaces are only 0.1 me-
ters apart and that the Debye length is 0.2
meters. The point charge model assumes that
the equivalent point charges have a separation
distance of 1.1 meters, which is over 5 times
the Debye length distance. Thus, the point
charge model predicts that there would be es-
sentially no electrostatic force between the two
spheres. However, because small surface sec-
tions are only 0.1 meters apart, which is half the
Debye length, the 3D spheres would actually ex-
perience a much larger force than predicted by
the point charge model.

Note that this 3D effect of the charged surface
drops off quickly with the separation distance.
It is encouraging that the actual forces are
larger than originally anticipated. Future work
will need to investigate the induced charging ef-
fect. The induced redistribution of charge can
be calculated by solving the Maxwell’s equation
with appropriate boundary conditions. This
new surface charge distribution can be used to
find a more accurate Coulomb force between
two spheres.
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Figure 6: Contour plots showing the percentage error in the Coulomb force calculated
using the point charge model and the discretized surface model for two spheres under
plasma screening.
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Figure 6: Contour plots showing the percentage error in the Coulomb force calculated
using the point charge model and the discretized surface model for two spheres under
plasma screening.
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Figure 5.19: Contour plots showing the percentage error in the Coulomb force calculated using the point
charge model and the discretized surface model for two spheres under plasma screening.
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Chapter 6

Reconfiguration Time Study of
Coulomb Craft

The study of electrostatic charging data of
the SCATHA spacecraft6 verified that space-
craft can charge to very high voltages in low
plasma environments such as GEO. The associ-
ated electric power requirement is typically less
than 1 Watt. The charged spacecraft can pro-
duce electrostatic Coulomb forces which can be
used to increase or decrease the relative dis-
tance between the two craft. Henceforth, this
kind of reconfiguration using Coulomb forces is
referred to as Coulomb reconfiguration. This
novel propellantless reconfiguration concept has
many advantages over conventional thrusters
like ion engines. Coulomb propulsion effectively
uses no consumables and is also a very clean
method of propulsion compared to ion engines,
thereby avoiding the thruster plume contami-
nation issue with neighboring crafts.

However, this Coulomb reconfiguration also
has its own set of limitations. The Coulomb
electrostatic force magnitude is inversely pro-
portional to the square of the separation dis-
tance. Additionally, the Coulomb force effec-
tiveness is diminished in a space plasma envi-
ronment due to the presence of charged plasma
particles. The electric field strength drops off
exponentially with increasing separation dis-
tance. The severity of this drop off is char-
acterized with the Debye length.41,42 For low
earth orbits (LEO), the Debye length is of the
order of millimeters to centimeters, making the
Coulomb reconfiguration concept impractical at
these low orbit altitudes. At geostationary or-
bit (GEO) altitudes or higher, which has a hot-

ter and less dense plasma environment, the De-
bye length can vary between 100-1000 meters
depending on the solar activity cycles. The
Coulomb reconfiguration concept appears to be
feasible at this altitude.

6.1 Inertial Space Reconfigu-
ration Study

In this section, we study the feasibility and the
charge requirements for Coulomb reconfigura-
tion. The craft are assumed to be in free-space
(inertial-space) and the orbital mechanics ef-
fects are neglected. Assume first that the craft
are reconfigured using a conventional thrusters,
and that the craft have a maximum accelera-
tion that they can experience. The classical
fuel-optimality solution dictates that a bang-
bang control strategy be used. Here the craft is
accelerated for half the maneuver time with a
positive constant acceleration, and decelerated
with the negative constant maximum accelera-
tion.

A similar bang-bang-type of control is pro-
posed for the charged reconfiguration. We still
assume the craft are at rest to begin with, and
require them to be at rest at the end of the
maneuver. Initially, the crafts are given a fixed
charge of same polarity. This causes them to
accelerate away from each other. After a fixed
time the polarity of one craft is reversed. The
resulting attraction between the craft deceler-
ates their motion and brings them to a com-
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plete stop at the required separation distance.
Assume a craft can only be charged up to a
maximum charge level qmax. Then, to reach a
new separation distance d as quickly as possible,
we need to accelerate and decelerate the craft
as quickly as possible. However, compared to
the classical bang-bang solution with reverses
the direction of the constant thrust half-way
through the maneuver, the constant charge con-
trol will cause a time varying acceleration to act
on the craft. The further apart the craft be-
come, the smaller the resulting breaking force
will be. This causes the switching time to not
be at the maneuver half way point, but earlier.

The goal of the study is study a series of rest-
to-test charged spacecraft maneuvers. The de-
sired final separation distances, and the maneu-
ver times, are swept over a finite range. For
each setup we determine the constant charge
magnitude and the switch time at which the
polarity has to be reversed. Two scenarios, one
with 2 craft of equal masses and the other with
a Gluon-Deputy arrangement are studied. The
effects of Debye lengths are included as well .

6.1.1 Free-Space Reconfiguration
Dynamics

Consider a two satellite arrangement as
shown in Figure 6.1. Let the origin be located
at the center of mass. The distance of craft 1
and craft 2 from the origin are x1 and x2, re-
spectively. The separation distance between the
two craft is d, given by

d = x1 − x2 (6.1)

Since the origin is located at the center of mass,
the center of mass condition dictates that

m1x1 +m2x2 = 0 (6.2)

Therefore, once we know the motion of one
craft, the motion of the other craft can be
determined using the above condition. From
Eq. (6.1) and Eq. (6.2), the position of the craft
1 can be written as

x1 = d

(
1 +

m1

m2

)−1

(6.3)

x2

d

Separation Distance

x1

m2 m1

Coulomb Force

kc
q1q2

d2

craft 1craft 2

Figure 6.1: Figure illustrating the 2 craft arrange-
ment.

The two craft are assumed to be in free space
and no other external force is acting on the for-
mation. The initial internal forces acting on the
deputy are the gravitational force and Coulomb
force. The former is given by the formula

Fg = G
m1m2

d2
(6.4)

where G is the universal gravity constant and,
m1 and m2 are the mass of craft 1 and craft 2,
respectively. The Coulomb force is given by

Fc = kc
q1q2
d2

(6.5)

where kc is the Coulomb constant and, q1 and
q2 are the charges of craft 1 and craft 2, respec-
tively. The force expression in Eq. (6.5) can be
rewritten using the voltages produced due to
the charges as

Fc =
r1r2
kc

V1V2

d2
e

“
−d
λd

”
(6.6)

where V1 and r1 are the voltage and radius of
craft 1 and, V2 and r2 denote the same for craft
2. The exponential decay term is due to the
Debye shielding where λd is the Debye Length.

Using Newton’s second law, the equation of
motion of craft 1 (m1) is written as

m1ẍ1 = −Gm1m2

d2
+
r1r2
kc

V1V2

d2
e

“
−d
λd

”
(6.7)
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Using Eq. (6.3), separation distance d in
Eq. (6.7) can be substituted with an expression
in terms of x1. The Gravitational force acting
on the satellites is very small compared to the
Coulomb forces (with kV voltages and higher),
such that the equation of motion of craft 1 (m1)
is simplified to

m1ẍ1 =
r1r2
kc

V1V2

x2
1

(
1 + m1

m2

)2 e

 
−x1(1+

m1
m2

)
λd

!
(6.8)
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Figure 6.2: Schematic representation of the bang-
bang charging.

6.1.2 Bang-Bang Charging

The main idea behind bang-bang charging is to
use a fixed common voltage for accelerating the
craft and reversing the polarity of one craft after
some time to decelerate both craft. Figure 6.2
shows a schematic representation of this kind of
charging. Here the voltage is maintained at a
constant value V until it reaches the switching
time t0, and after that the voltage polarity is
reversed.

Voltage =

{
V 0 < t ≤ t0

−V t0 < t < tmax

(6.9)

For a given final separation distance d̄ and time
(tmax) for achieving this distance, a unique volt-
age V and switch time t0 can be determined.
Given this maximum craft voltage V the dis-
tance d̄ is the largest separation that can be
achieved given the maneuver time tmax.

Our aim is to generate contour plots of the
voltages required to carry out these bang-bang
maneuvers for different final separation dis-
tances and maneuver times. Figure 6.3 gives
the schematic representation of the homotopies
used in generating the contour plots. Initially,
for small change in separation distance and a
small maneuver time, we use an initial guess
along with the shooting method to find the
optimal switch time and the constant voltage
magnitude. Using this result, the first set of
homotopies are carried across the maneuver
time, while keeping the separation distance con-
stant. It should be noted that the homotopy
just means using the converged results in the
previous case as the initial guess for the current
problem, while a shooting method is then used
to converge to the new optimal answer. The
other homotopies are performed across the fi-
nal separation distance using the results of the
first set of homotopies as initial conditions.

The numerical two-point boundary value
problem solution is started with an initial guess,
and then uses a shooting method to converge
to a unique solution. For small changes in sep-
aration distances the 1/d2 drop off in the force
magnitude is not that significant. This allows
us to approximate the switching time with the
constant acceleration special where where

t0 =
tmax

2
(6.10)

Let d̄ be the final desired separation and x̄1 cor-
respond to the position of mass m1 at this sep-
aration distance. Then the initial guess for the
product of voltages is given by

V1V2 = 2(x̄1 − x1)t2max

kcd̄
2

r1r2e

“
−d̄
λd

” (6.11)

This voltage product is computed assuming
that the corresponding craft accelerations are
constant. The actual accelerations will natu-
rally decay with the inverse square of the sepa-
ration distance. However, this approximation
works well small small initial separation dis-
tances.

From Eq. (6.8), it is clear that we have a 1/d2

type of decay for the force acting between the

65



Initial Guess

The homotopies across separation
distances using the results of the
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Figure 6.3: Schematic representation of the homotopies used in generating the contour plots.

craft as the separation distance increases. In
addition to this, there is also an exponential
decay term due to the Debye shielding effect.
Due to these reasons, the initial conditions in
Eq. (6.10) and Eq. (6.11) will not work well for
maneuvers with large transfer distances. In or-
der to overcome this difficulty the method of
homotopy is used. In this method the distances
are increased in small incremental steps and the
converged solution (using shooting method) for
the previous step is used as the current initial
guess. By choosing small enough changes in
d̄ or tmax, the previous solution is still a good
guess for the next numerical search. The oth-
erwise very sensitive and difficult to converge
two-point boundary value problem is thus suf-
ficiently desensitized.

Figure 6.4 illustrates the bang-bang charg-
ing process for sample maneuvers where the
separation distance between two craft of equal
masses is increased from 2 m to 3 m. Fig-
ures 6.4(a), 6.4(b) and 6.4(c), illustrate the volt-
age, coulomb force experienced and the position
time histories of mass m1. It can be seen from

theses figures that as the total maneuver time
is increased from 0.1 day to 1 day, the voltage
required falls rapidly and the switch time in-
creases. In all cases the craft perform a rest-to-
rest maneuver ending with x1 = 1.5 m, and ẋ1

= 0 m/s. Further, note the nonlinear Coulomb
force time histories in Figure 6.4(b). As the sep-
aration distance d increases, the force applied to
craft 1 diminishes.

6.1.3 Simulation Results

The simulations are carried out for two different
scenarios. In the first one, the two craft are
of equal mass and size. In the second scenario
the gluon-deputy arrangement is used. Here the
gluon is much heavier and larger in size than the
deputy craft. Due to its huge mass the distance
moved by the gluon will be very small and we
can consider it to be stationary. In this case, the
total separation distance will be roughly equal
to the distance moved by deputy. Where as
in the equal mass case the two crafts will move
equal distance and the total separation distance
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Figure 6.4: Graphs illustrate the bang-bang charging process. Increasing the separation between two
satellites of equal masses from 2 m to 3 m in different maneuver time.
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Figure 6.5: Graphs illustrates how the switch time
and voltage required varies as the separation dis-
tance is increased from 15 m to various amounts.
These voltages and switch time correspond to the
gluon-deputy arrangement with a constant maneu-
ver time of 1.0 hour.

will be twice the distance moved by any one
on the craft. The various input parameters are
given in Table 6.1.

In order to get a feel for how the voltage and
switch time vary across the separation distance
for a fixed maneuver time, let us study the nu-
merical simulation results illustrated in the Fig-
ure 6.5. For a fixed maneuver time of 1 hour the
Figures 6.5(a) and 6.5(b) give the switch time
t0 and voltage V , respectively, for the gluon-
deputy arrangement to increase their separation
distance from 15 m to various amounts. Ob-
serve that the increase in voltage with increase
in separation distance is essentially quadratic,
whereas the switch time t0 decreases exponen-
tially with increasing separation distances. This
exponential decrease is due to the 1/r2 term in
the Coulomb force and without this term the
switch time would have been exactly half the

Table 6.1: Input Parameters Used in Simulation

Equal Gluon-
Mass Deputy

Parameter Crafts Crafts

Craft 2 Mass, m1 50 kg 50 kg
Craft 2 Mass, m2 50 kg 1000 kg
Craft 1 Radius, r1 0.5 m 0.5 m
Craft 2 Radius, r2 0.5 m 10 m
Initial Separation
distance, d 2 m 15 m

total maneuver time. We can also observe in
Figures 6.5(a) that for very small separation
distances the switch time approaches 0.5 hours
which is half of the 1.0 hour maneuver time.
As the final separation distance increases the
switch time approaches zero (i.e. the initial
voltage becomes a pulse).

Figure 6.6 shows the contour plots of the volt-
age required to increase the separation distance
between two craft to several meters with differ-
ent maneuver times. The craft have equal mass
and the initial separation distance is always 2
m. The contour plots have been evaluated for
two different Debye lengths of 100 m and 50 m.
The white patches in the contour plots repre-
sent regions where we are unable to find a con-
verged solution. In the shooting method, we
use the MATLAB function ode45 with an ab-
solute and relative tolerance of e − 12. As the
final separation distance increases, even though
we use homotopy, for large enough separation
distances the integration tolerance exceeds the
allowed limit. This is the reason why we are not
able to find converged solutions at these points
at the present time. Further investigation needs
to be carried out to find these solutions. How-
ever, the contour plots gives the general trend
in the voltage requirements. For example, in
Figure 6.6(a) the voltage required to increase
the separation distance in 4 hours from 2 m to
5m is roughly 102.75 volts, and to increase 10m
it is 103.5 volts.
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One reason for this very sensitive nature of
this two-point boundary value problem can be
seen in the switching time plot in Figure 6.5(a).
Here the maneuver time is held constant, while
the maximum separation distance value is swept
from 15–100 meters. The switching time t0
curve is visibly flatting out. As a result, for
large separation distances, the switching time
computation is becoming increasingly critical.
A small change in the switching time corre-
sponds to a very large change in the separation
distances. With the current simulation setup
using the variable time-step Matlab Runge-
Kutta integrator, the numerical integration ac-
curacy control begins to break down after cer-
tain separation distances.

The second set of simulations are for the
gluon-deputy arrangement. The specifications
of the gluon and deputy are given in table 6.1.
The initial center to center separation distance
between the gluon and the deputy is 15m. Fig-
ure 6.7 gives the simulation result for this ar-
rangement. The voltages appear similar to the
previous case. But, it should be noted that
the gluon, due to its large radius, is carrying
a greater charge for the same voltage levels.

The final simulation is carried out using the
same gluon deputy arrangement as above. But
the initial separation distance is varied and the
separation distance is increased by a fixed dis-
tance of 10m. Figure 6.8 gives the contour plots
of the voltage needed for this maneuver. Again,
the simulation is carried out for two different
Debye lengths (100 m and 50 m).

6.2 Closed-Loop
Reconfiguration of 2-Craft
Coulomb Tether in GEO

Next a Coulomb structure reconfiguration is
performed in a circularly restricted GEO orbit.
A closed-loop charge feedback control law is de-
veloped to stabilize the time varying separation
distance. The orbital dynamics are exploited to
stabilize the in-plane attitude motion with the
gravity gradient torque.

A 2-satellite formation is considered as shown

Satellite 1
Initial position

Satellite 2
Initial position

Satellite 2
Final position

Satellite 1
Final position

Earth

Orbit Radial Direction

Keplerian orbit
of the center of mass

Coulomb Forces

Satellite 2
Final Position

ôr

Figure 6.9: A simple Coulomb tracking illustra-
tion.

in the Figure 6.9. The center of mass is assumed
to maintain a circular Keplerian orbit and the
two satellites are nominally aligned along the
orbit radial direction. In essence, these two
charged spacecraft will behave like a conven-
tional 2-craft tether system, with the exception
that this electrostatic tether is capable both of
attractive and repulsive forces. Reference 30
shows that the relative distance between the
two satellites can be controlled using electro-
static Coulomb forces. A charge feedback law
is used to maintain the relative distance at a
constant value. As a result, the two satellites
behave like a long slender nearly rigid body and
the differential gravitational attraction is used
to stabilize the attitude of this formation about
the orbit radial direction. From this point on-
wards, this will be referred to as the Coulomb
tether regulation problem. These concepts are
extended for the time varying Coulomb tether
length tracking problem. The main aim in
the tracking (reconfiguration) problem is to in-
crease or decrease the relative distance between
the satellites by forcing them to move relative to
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Figure 6.6: Graphs illustrates the contour plot of the voltage (log) needed on two craft of equal mass to
increase the separation distance from 2 m to several meters in different maneuver time, using bang-bang
charging.
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Figure 6.7: Graphs illustrates the contour plot of the voltage (log) needed for a gluon-deputy satellite
arrangement to increase the separation distance from 15 m to several meters in different maneuver time,
using bang-bang charging.
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Figure 6.8: Graphs illustrates the contour plot of the voltage (log) needed for a gluon-deputy satellite
arrangement to increase the separation distance by 10 m for various initial separation distances in different
maneuver time, using bang-bang charging.
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each other along a prescribed path. This static
Coulomb structure reconfiguration is to be ac-
complished without loosing altitude stability.

6.2.1 Dynamic Modeling

The Clohessy-Wiltshire-Hill’s equations12–14

for one of the spacecraft in the 2-craft Coulomb
tether formation is given by

ẍ1 − 2nẏ1 − 3n2x1 =
kc

m1

(x1 − x2)
L3

q1q2

ÿ1 + 2nẋ1 =
kc

m1

(y1 − y2)
L3

q1q2

z̈1 + n2z1 =
kc

m1

(z1 − z2)
L3

q1q2

where ρi = (xi, yi, zi)T is the position vector of
the ith satellite in Hill frame components, m1

and q1 are the mass and charge of satellite 1,
and L is the distance between the satellites 1
and 2. The constant chief orbital rate is given
by n =

√
µ/r3c , where µ is the gravitational

coefficient and rc is center of mass position vec-
tor. The parameter kc = 8.99 · 109 Nm2/C2 is
the Coulomb constant. As the Hill frame origin
is set to be identical to the formation center of
mass, the motion of the 2nd craft can be found
by noting that the center of mass vector is con-
stant due to conservation of linear momentum.
This yields43,44

m1ρ1 +m2ρ2 = 0 (6.12)

The differential equation of the separation dis-
tance L, between the two satellites is given by30

L̈ = (2nψ̇ + 3n2)L+
kc

m1
Q

1
L2

m1 +m2

m2
(6.13)

For the Coulomb tether regulation problem, L
is taken as a sum of a constant reference length
Lref and a small varying length δL. Similarly,
let Q be the sum of Qref, which is the ideal con-
stant charge needed to maintain the satellites
in a rigid formation of length Lref, and a small
charge variation δQ.

L(t) = Lref + δL(t) (6.14a)
Q(t) = Qref + δQ(t) (6.14b)

The reference charge Qref is a function of
Lref and is computed analytically from the lin-
earized Hill frame equations. The analytical ex-
pression for Qref is written as30,36

Qref = −3n2L
3

kc

m1m2

m1 +m2
(6.15)

It should be noted that in the Coulomb tether
regulation problem Lref is constant and the dif-
ferential equation given in Eq. (6.13) is lin-
earized by assuming a small δL separation dis-
tance error. This can be slightly modified to
accommodate the Coulomb tracking problem.
The reference Coulomb structure length Lref(t)
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us made time varying, but the separation dis-
tance errors δL(t) are still assumed to be small.

L(t) = Lref(t) + δL(t) (6.16a)
Q(t) = Qref(t) + δQ(t) (6.16b)

Here Lref(t) is the time varying reference sep-
aration distance and Qref(t) is the correspond-
ing reference charge which can be calculated us-
ing Eq. (6.15). Substituting the assumptions in
Eq. (6.16) into Eq. (6.13) and linearizing assum-
ing small δL, we get

δL̈ = −L̈ref + 2nLrefψ̇ + 9n2δL

+
kc

m1
δQ

1
L2

ref

m1 +m2

m2
(6.17)

This equation establishes the relation between
the additional charge δQ required and the
change in relative separation of the satellites.
We observe that this relation is coupled to the
angular in-plane perturbation rate ψ̇. In or-
der to obtain an expression for this, we resort
to a stability analysis using the gravity gradi-
ent. The derivation of the expression for angu-
lar perturbation closely follows the derivation
given in Reference 30 for the Coulomb regula-
tion problem. The linearized attitude dynamics
of the Coulomb tether body frame B are writ-
ten along with the separation distance equation
as:

θ̈ +
2L̇ref

Lref
θ̇ + 4n2θ = 0 (6.18a)

ψ̈ +
2L̇ref

Lref
ψ̇ +

2n
Lref

δL̇− 2L̇ref

L2
ref

nδL

+
2L̇ref

Lref
n+ 3n2ψ = 0

(6.18b)

δL̈+ L̈ref − 2nLrefψ̇ − 9n2δL

− kc

m1
δQ

1
L2

ref

m1 +m2

m2
= 0

(6.18c)

Thus, Eqs. (6.18a) – (6.18c) are the linearized
equations of motion of the Coulomb track-
ing about the static nadir reference configura-
tion. Only the linearized δL differential equa-
tion was obtained using the Clohessy-Wiltshire-
Hill equations, while the linearized differential

equations of ψ and θ were derived from the full
formation angular momentum expression along
with Euler’s equation. Compared to the regu-
lation problem, these differential equations are
non-autonomous and depend explicitly on time
through Lref(t). This greatly complicates the
stability analysis of any feedback control law.

Let the charge product variation δQ be the
control signal. The Coulomb regulation feed-
back control is then modified to incorporate a
time-varying Lref(t) term.

δQ =
m1m2L

2
ref(t)

(m1 +m2) kc
(−C1δL− C2δL̇) (6.19)

The constants C1 and C2 are the position and
velocity feedback gains. Incorporating this
feedback law in to the δL differential equation
in Eq. (6.18c), we get following closed-loop sep-
aration distance dynamics.

δL̈+ L̈ref − 2nLrefψ̇ + (C1 − 9n2)δL

+ C2δL̇ = 0 (6.20)

It can be observed that the linearized equations
in Eq. (6.18a) – (6.18c) depend on the mean or-
bit rate n which has a very small value at GEO.
In order to eliminate the numerical issues that
might arise while integrating due to the small n
value, the following normalization transforma-
tion is employed to make these equations inde-
pendent of n.

dτ = Ωdt (6.21a)

(∗)′ =
d(∗)
dτ

=
1
Ω

d(∗)
dt

(6.21b)

The orbit rate independent form of the lin-
earized equations in Eq. (6.18a) – (6.18c) are
written as

θ′′ +
2L′ref
Lref

θ′ + 4θ = 0 (6.22a)

ψ′′ +
2L′ref
Lref

ψ′ +
2
Lref

δL′

−
2L′ref
L2

ref

δL+
2L′ref
Lref

+ 3ψ = 0
(6.22b)

δL′′ + L′′ref − 2Lrefψ
′

+(C̃1 − 9)δL+ C̃2δL
′ = 0

(6.22c)
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where C̃2 = (C2/Ω) and C̃1 = (C1/Ω2) are non-
dimensionalized feedback gains. These equa-
tions show that the out-of-plane motion θ(t)
is decoupled from the charge product term δQ
and separation distance variation δL(t). There-
fore, it is not possible to control the out-of-plane
motion using charge control in this linearized
analysis. However, the in-plane motion ψ(t) is
coupled to the δL(t) motion in the form of a
driving force and hence, requiring a coupled in-
plane attitude and separation distance stability
analysis.

6.2.2 Stability Analysis

With time varying Lref(t), the equations
of motion are linear and time dependent.
Rosenbrock45 has shown that the linear time-
dependent system given by ẋ = A(t)x is asymp-
totically stable if the frozen system for each
t is stable and the rate of change of A(t) is
very small. He also established bound for A′(t)
when A(t) is in the control canonical form. We
will analyse the stability of our system based
on this method. Using the state vector x =
(ψ,ψ′, δL, δL′)T , the coupled δL and ψ equa-
tions in Eq. (6.22b) – (6.22c) can be written in
the state space form

x′ = A(t)x + d(t) (6.23)

where

A(t) =


0 1 0 0

−3 −2L′
ref

Lref

2L′
ref

L2
ref

− 2
Lref

0 0 0 1
0 2Lref 9− C̃1 −C̃2

 (6.24)

and

d(t) =


0

−2L′
ref

Lref

0
−L′′ref

 (6.25)

Note that the forcing vector d(t) goes to zero
at the end of the maneuvers where Lref becomes
constant. If the reference separation distance is
varied linearly, then only the 2nd entry will be
non-zero. The time dependency of the square

A(t) matrix is due to the terms Lref and L′ref.
The stability of the system greatly depends on
the rate at which Lref is varied. The rate of
change of reference length L′ref, can be chosen
according to the mission requirement or design.
Of interest is how large L′ref can be while still
guaranteeing stability. From Eq. (6.23), we can
observe that there is a disturbance term in the
equation of motion which might lead to a steady
state offset as long as Lref is time varying. The
analytical expression for the steady state offset
is given as follows

(
ψoffset

δLoffset

)
=

−2L′
ref

3Lref
+ 2L′

refL
′′
ref

3(−9+3C̃1)L2
ref

+ L′′
ref

(−9+3C̃1)


=

− 2L̇ref
3nLref

+ 2L̇refL̈ref

3n(−9n2+3C1)L2
ref

+ L̈ref
(−9n2+3C1)


(6.26)

Before fixing the limits for L′ref, let us choose
the values for gains so that the A(t) matrix is
Hurwitz at any given time t. In the regula-
tion problem the feedback gains were expressed
in terms of scaling factor c and α. Since this
work is an extension of the regulation problem,
the same scaling factor for the gains are chosen.
They can be written as

C̃1 = c (6.27)

and

C̃2 = α
√
c− 9 (6.28)

The characteristic equation of the A(t) matrix
is given by

λ4 + (C̃2 + 2
L′ref
Lref

)λ3 + (C̃1 + 2C̃2
L′ref
Lref

− 2)λ2

+(3C̃2− 22
L′ref
Lref

+2C̃1
L′ref
Lref

)λ+3(C̃1− 9) = 0

(6.29)

Let k = L′ref/Lref be a time varying coefficient
which is determined through the chosen ref-
erence separation time history Lref(t). With
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this simplification the characteristic equation of
A(t) becomes

λ4 + (C̃2 + 2k)λ3 + (C̃1 + 2C̃2k − 2)λ2

+ (3C̃2 − 22k + 2C̃1k)λ+ 3(C̃1 − 9) = 0
(6.30)

To ensure stability, roots of the characteris-
tic equation should have negative real parts
(Hurwitz matrix). This requirement is satis-
fied using the Routh-Hurwitz stability criterion.
Based on this criterion it is established that C̃1

should have a value greater than 9 and the range
of possible values for k and α for certain fixed
C̃1 is shown in Figure 6.11. The shaded re-
gion illustrates the possible values of k and α
which guarantee that roots of the characteris-
tic equation (i.e. the eigenvalues of the matrix
A(t)) have negative real parts. It can be ob-
served from Figure 6.11 that for C̃1 > 10 there
is no bounds on k when we are expanding the
separation distance. But, for contracting or de-
creasing the separation distance (i.e. −k) we
have a tight limit on k. The α value is fixed
such that we have a maximum range of k. From
Figures 6.11(b) and 6.11(c), the values of α are
taken as 1.4 and 0.9 for the C̃1 values of 12 and
14, respectively.

By satisfying the Routh-Hurwitz criterion,
the eigenvalues of A(t) at any fixed time t will
always be in the left half of the plane. This
is not sufficient to guarantee stability of the
system. The sufficient condition is that rate
of change of A(t) be very small. Rosenbrock45

established bounds for this rate of change and
stated it as a theorem when A(t) is in the con-
trol canonical form (Ac(t)). For the sake of
continuity the theorem is stated here, but the
reader should refer to Reference 45 for the de-
tailed derivation of the theorem. Let the matrix
L be defined as

L = SAT
c +AcS − S′ + ηI < 0 (6.31)

(Sij) =
n∑

k=1

λi−1
k λ̄j−1

k (6.32)

where Sij are the elements of the S matrix, λk

and λ̄k are the eigenvalues and its conjugate, S′

is the derivative of S and η > 0 is some arbitrary
constant. When all the eigen values of Ac are
distinct and in the left half of the plane at any
given instant of time, and L is negative definite
throughout the maneuver, the system is asymp-
totically stable about x = 0. For our problem,
this requires the time varying reference sepa-
ration distance Lref(t) to be carefully chosen so
that the L is negative definite at all times. This
theorem is based on the fact that for a matrix in
the control canonical form, the eigenvalues are
uniquely related to the elements of the matrix
and hence, the bounds on the rate of change of
the matrix can be replaced by bounds on the
rate of change of the eigenvalues. Some more
details about the S matrix are given in the fol-
lowing equation.

S = HH∗ (6.33)

where H is the is the eigenvector matrix and
H∗ is the transposed complex conjugate of H.
The matrix H is defined as

H =


1 1 · · · 1
λ1 λ2 · · · λn

λ2
1 λ2

2 · · · λ2
n

...
...

. . .
...

λn−1
1 λn−1

2 · · · λn−1
n

 (6.34)

Studying the characteristic equation in
Eq. (6.30), note that if Lref(t) is chosen such
that the coefficient k = L′ref/Lref is constant,
then the eigenvalues of Ac(t) are also constant.
For this special case the Rosenbrock stability
conditions on the rate of change of A(t) are
trivially satisfied, and the overall stability is de-
termined through the Routh-Hurwitz stability
conditions. However, having a constant k co-
efficient is not a practical maneuver because it
requires exponential expansion or contraction.

The A(t) matrix in Eq. (6.23) is not in the
control canonical form, but it can be trans-
formed in a control canonical form using a sim-
ilarity transformation ξ = Tx which yields the
differential vector equation

ξ′ = Ac(t)ξ (6.35)
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Figure 6.11: Plots showing the regions that satisfy the Routh Hurwitz stability criterion for an autonomous
dynamical system.
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It should be noted that the characteristic equa-
tion of the transformed matrix Ac(t) is the same
as the original matrix A(t). Hence, the val-
ues of gains chosen earlier will keep the eigen-
values in the left half plane. For this trans-
formed matrix we can establish the bounds on
Lref and L′ref which guarantee that the matrix
L remains negative definite. The transformed
states ξ are linear combinations of the original
states x. Therefore, if the transformed states
are stable then the original states are also sta-
ble. The control canonical form of the matrix
(Ac(t)) for the given matrix A(t) can be eas-
ily written by observing the characteristic equa-
tion.

Ac(t) =


0 1 0 0
0 0 1 0
0 0 0 1
a41 a42 a43 a44

 (6.36)

where

a41 = −3(C̃1 − 9) (6.37a)

a42 = −(3C̃2 − 22k + 2C̃1k) (6.37b)

a43 = −C̃1 + 2C̃2k − 2) (6.37c)

a44 = −(C̃2 + 2k) (6.37d)

Because Ac(t) is a 4 × 4 matrix, analytically
finding the expression for eigenvalues and using
them in the inequality in Eq. 6.31 is very chal-
lenging. The resulting expressions are too com-
plex to be insightful. Instead the feasible values
of Lref and L′ref that satisfies the inequality in
Eq. 6.31 for the chosen values of C̃1 and α are
identified numerically. These feasible values are
shown in Figure 6.12.

When designing the reconfiguration maneu-
ver and the corresponding Lref(t) values, care
must be taken that the Lref versus L′ref phase
plots remain within the solid colored area. Ob-
serve that the longer the virtual Coulomb struc-
ture is, the more aggressive the reconfiguration
maneuvers can be. This can be explained by
treating the 2-craft formation as a single slen-
der rigid body at any instance of time. The
relative equilibria conditions of a rigid body in
orbit require it to have the axis of least inertia

in the orbit nadir direction ôr, while the axis
of maximum inertia is about the orbit normal
direction ôh.14 As the separation distance is
decreased, the formation principle axes are less
well determined, resulting in a smaller regions
of stability.

6.2.3 Numerical Simulation

To illustrate the performance and stability of
Coulomb tether reconfiguration maneuvers, the
following numerical simulations are performed.
The simulation parameters that used are listed
in Table 6.2. The initial attitude values are set
to ψ = 0.1 radians and θ = 0.1 rad. The separa-
tion length error (Coulomb tether length error)
is δL = 0.5 meters. All initial rates are set to
zero through ψ̇ = δL̇ = θ̇ = 0. Two sets of ma-
neuvers, expanding the Coulomb tether forma-
tion from 25m to 35m in 1.8 days and contract-
ing the formation from a separation distance of
25m to 15m, are shown.

Table 6.2: Input Parameters Used in Simulation

Parameter Value Units

m1 150 kg
m2 150 kg
kc 8.99× 109 Nm2

C2

Ω 7.2915× 10−5 rad/sec
δL(0) 0.5 m
ψ(0) 0.1 rad
θ(0) 0.1 rad

The Coulomb tether performance is simu-
lated in two different manners. First the lin-
earized spherical coordinate differential equa-
tions are integrated. This simulation illus-
trates the charge control performance operat-
ing on the linearized dynamical system. Sec-
ond, the exact nonlinear equations of motion of
the deputy satellites are solved using the same
charge feedback control, and compared to the
performance of the linearized dynamical sys-
tem. The nonlinear deputy equations are given
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Figure 6.12: Plots showing the regions that satisfy the Routh Hurwitz stability criterion and Rosenbrock
bounds.

through Cowell’s equations

r̈1 +
µ

r31
r1 =

kc

m1

Q

L(t)3
(r1 − r2) (6.38a)

r̈2 +
µ

r32
r2 =

kc

m2

Q

L(t)3
(r2 − r1) (6.38b)

where r1 = rc + ρ1 and r2 = rc + ρ2 are the
inertial position vectors of the the masses m1

and m2, while L =
√

(r2 − r1) · (r2 − r1). The
vector rc denotes the position of the formation
center of mass or chief location. The gravita-
tional coefficient µ is defined as µ ≈ GMe. After
integrating the motion using inertial Cartesian

coordinates, the separation distance L, as well
as the in-plane and out-of-plane angles ψ and θ,
are computed in post-processing using the exact
kinematic transformation.

Figure 6.13(a) shows the Coulomb tether mo-
tion for increasing the separation distance from
25m to 35m in the linearized spherical coor-
dinates (ψ, θ, δL), along with the full nonlin-
ear spherical coordinates shown as continuous
lines. The expansion is done in 1.8 days and
this corresponds to a constant L′ref of 0.88. Af-
ter 1.8 days, the L′ref is zero and the formation
is allowed to stabilize about the final separation
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distance. The feedback gains are C̃1 = 12 and
α = 1.4. With the presented charge feedback
law, both the yaw motion ψ and the separation
distance deviation δL converge to zero. By sta-
bilizing the δL state to zero, the in-plane rota-
tion ψ(t) also converges to zero. As expected,
the pitch motion θ(t) was a stable sinusoidal
motion, decoupled from the controlled in-plane
orbital motion. Further, Figure 6.13(a) shows
that the nonlinear simulation closely follows the
linearized simulation, validating the linearizing
assumption and illustrating robustness to the
unmodelled dynamics. Since L′ref is constant,
there is no steady state offset for δL and the
offset for ψ is very small (order of 10−2 rad)
and hence, not visible in the graph.

Figure 6.13(b) shows the spacecraft control
charge q1 (on craft 1) for both the linearized and
full nonlinear simulation models. Both are con-
verging to the reference value pertaining to the
static equilibrium at each instant of time. Note
that the deviation from the value of reference
charges is small, justifying the linearization as-
sumptions used. The magnitude of the control
charges is in the order of micro-Coulomb which
is easily realizable in practice using charge emis-
sion devices. The charge on craft 2 will be equal
and opposite to the charge on craft 1.

Figure 6.14(a) and Figure 6.14(b) show
Coulomb tether motion and charge time histo-
ries for decreasing the separation distance from
25m to 15m. Contractions are more challeng-
ing because the angular momentum will cause
to destabilize the in-plane attitude motion. The
maneuvers must be performed slow enough to
allow the gravity gradient to maintain stabil-
ity. Again the maneuver is done in 1.8 days
which means L′ref is −0.88 and the gains are
same as above expansion maneuver. These two
sets of maneuvers are repeated for the gain val-
ues C̃1 = 14 and α = 0.9 and, Figure 6.15
and Figure 6.16 illustrate their time histories.
It can be observed from these two graphs that
even though the system is stable, the perfor-
mance could potentially be improved by tuning
the feedback gains.
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Figure 6.13: Simulation results for expanding the spacecraft separation distance from 25m to 35m in 1.8
days. The feedback gains are C̃1 = 12 and α = 1.4.
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Figure 6.14: Simulation results for contracting the spacecraft separation distance from 25m to 15m in 1.8
days. The feedback gains are C̃1 = 12 and α = 1.4.
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Figure 6.15: Simulation results for expanding the spacecraft separation distance from 25m to 35m in 1.8
days. The feedback gains are C̃1 = 14 and α = 0.9.
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Figure 6.16: Simulation results for contracting the spacecraft separation distance from 25m to 15m in 1.8
days. The feedback gains are C̃1 = 14 and α = 0.9.
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Chapter 7

Spacecraft Charge Control and
Sensing

7.1 Spacecraft Charging
Fundamentals

7.1.1 The Phenomenon of
Spacecraft Charging

Since a spacecraft has no physical ground
connection to the surrounding space plasma
environment, it is free to assume an electri-
cal potential that is different from that in the
plasma. Such a potential difference occurs nat-
urally from the balance of free charge (currents)
to and from the vehicle. In the most simple
case, the currents involved are those due to the
free electrons in the space plasma – generat-
ing a negative current to the vehicle – and the
free ions in the plasma, which generate a posi-
tive current to the vehicle. The magnitudes of
these plasma currents (amount of charge per-
time) depend on the density of the particles and
their velocity towards the spacecraft.

In an equilibrium plasma, the particle veloc-
ities are given by the thermal motion and are
written as

vth =

√
kT

2πm

where k is Boltzmanns constant, T is the
plasma temperature, andm is the particle mass.
Typical space plasmas are composed mainly of
electrons and H+ ions (protons). Thus, if both
plasma species are at the same temperature and
density, the electrons, being 2,000 times less
massive than the ions, will have significantly

higher thermal velocity. In a given time, more
electrons will reach the surface of the spacecraft
than ions. This would result in a larger negative
current to the vehicle than positive current.

Because there is nowhere for this net nega-
tive current to “go” once it reaches the vehicle,
equilibrium is obtained in the steady state by
a change in spacecraft potential. The space-
craft will assume a negative value, such that
the electron current is reduced through elec-
trostatic repulsion, while the ion current is in-
creased through attraction. The magnitude of
the equilibrium negative potential will be suffi-
cient for the electron current to be exactly equal
to the ion current. Equilibrium is then defined
as the potential required for zero net current to
the vehicle. This concept is illustrated in Fig-
ure 7.1.

A number of real effects can change the
spacecraft potential from this simple equilib-
rium value. For instance, in LEO conditions the
plasma is relatively cool, while the spacecraft
velocity through the plasma is high. In such
cases the spacecraft velocity is much greater
than the ion thermal velocity but less than the
electron thermal velocity. In these conditions
the ions can only impact the upstream, or ram,
side of the vehicle, while the electrons accumu-
late on all surfaces resulting in an increased neg-
ative charge.

During day-side orbital conditions, the emis-
sion of photoelectrons can have a profound ef-
fect on the spacecraft potential. Ultraviolet ra-
diation from the sun causes exposed spacecraft
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Figure 1.  Illustration of spacecraft charging in equilibrium two-component plasma.  When 
spacecraft potential is equal to or greater than space plasma potential, more electrons than ions 
reach the surface per-unit-time.  As the spacecraft potential is reduced, the electrons are slowed 
by repulsion while the ions are attracted. 
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Figure 7.1: Illustration of spacecraft charging in
equilibrium two-component plasma. When space-
craft potential is equal to or greater than space
plasma potential, more electrons than ions reach the
surface per-unit-time. As the spacecraft potential is
reduced, the electrons are slowed by repulsion while
the ions are attracted.

surfaces to emit photoelectrons, which is a posi-
tive current to the spacecraft. Depending upon
surface material properties, the photoelectron
current can be the dominant source of charge
transfer with the plasma and can cause the
spacecraft potential to actually become posi-
tive. A figure showing the balance of the plasma
and photoelectric current is shown in Figure 7.2.

7.1.2 Absolute vs. Differential
Charging

For 30 years spacecraft charging has been
studied and an abundant history has been doc-
umented of spacecraft failures and anomalies
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Figure 7.2: Balance of space environmental cur-
rents with a spacecraft. Plasma electron and ion
current is balanced by photoelectric emission from
solar-irradiated surfaces. Spacecraft equilibrium po-
tential will obtain such that the net current is zero.

attributed to this phenomenon. Perhaps the
most notorious case was the complete loss of
Telsat Canadas Anik E2 satellite in January,
1994, leaving Telsat with the unpleasant loss
of a $228 million asset and revenues of an esti-
mated $3 billion.46 Since the subject of this re-
port is the intentional charging of spacecraft to
intimidating voltages, it is important to address
the difference between absolute and differential
charging.

Spacecraft charging of the type discussed in
Section 7.1.1 is known as absolute, or frame
charging. In absolute charging the overall ve-
hicle achieves a potential that is different from
the surrounding plasma. Pure absolute charg-
ing is not, inherently, dangerous to vehicle sub-
systems. The term “spacecraft charging” typ-
ically refers to differential charging of the ve-
hicle. Differential charging can arise from, for
example, photoemission on the sunlit side of
the vehicle or ram cloud build-up on the up-
stream face and results in portions of the vehicle
achieving different potentials because of local-
ized effects. Differential charging is exacerbated
by the use of dielectric materials (such as Kap-
ton and Teflon), which enable components to
become electrically isolated from the spacecraft
frame and each other.

Differential charging can cause sudden dis-
charge (arcs) between vehicle components
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and/or the existence of low-level currents
through dielectrics and semiconductors. Arcs
and small currents can be disruptive to on-
board electronics, which typically utilize low-
voltage and low-charge solid-state circuits.
Problems can include logic failures, anomalous
behavior, or complete destruction of hardware.
The susceptibility of a spacecraft for damage
due to differential charging depends on the
grounding configuration used on the vehicle.

While absolute charging is not associated
with the type of catastrophic upsets typical of
differential charging, it is not completely with-
out problems. Long-term effects arising from
highly biased spacecraft can include surface
damage from continuous low-level current dis-
charge to the plasma, spacecraft contamination
from re-attraction of emitted or off-gassed ma-
terial, and sputter erosion from impacting high-
energy ions. Such effects can alter thermal per-
formance and/or optical properties of sensitive
surfaces like photovoltaic arrays or science in-
struments.

7.1.3 Active Charge Control

As discussed in Section 7.1.1, an isolated space-
craft will assume an equilibrium charge state
such that the net environmental current due to
plasma and photoelectron emission is zero. It
is possible to change the net vehicle charge by
emitting current from the spacecraft. For ex-
ample, if it is desired to drive the spacecraft
charge more negative the emission of positive
charge from the vehicle will cause a net surplus
of on-board electrons and a lowering of the po-
tential. In order to emit such a current, the
charges must be ejected with sufficient kinetic
energy to escape the potential well created by
the vehicle in space. This is accomplished by
biasing an accelerator surface to a positive po-
tential and electrostatically repelling ions from
this surface into space. If the vehicle is nega-
tively charged at a potential −VSC referenced
to space, then ions must be repelled from a sur-
face maintained at voltage VPS (referenced to
spacecraft frame), where VPS must be greater
than | − VSC|. This is illustrated schematically
in Figure 7.3.

1.3. Active Charge Control 

 

As discussed in Section 1, an isolated spacecraft will assume an equilibrium charge state 
such that the net environmental current due to plasma and photoelectron emission is zero. It is 

possible to change the net vehicle charge by emitting current from the spacecraft.  For example, if 
it is desired to drive the spacecraft charge more negative the emission of positive charge from the 
vehicle will cause a net surplus of on-board electrons and a lowering of the potential.  In order to 

emit such a current, the charges must be ejected with sufficient kinetic energy to escape the 
potential well created by the vehicle in space.  This is accomplished by biasing an accelerator 

surface to a positive potential and electrostatically repelling ions from this surface into space.  If 
the vehicle is negatively charged at a potential -VSC referenced to space, then ions must be 

repelled from a surface maintained at voltage VPS (referenced to spacecraft frame), where VPS 
must be greater than |-VSC|. This is illustrated schematically in  

 

Figure 1-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3.  Schematic showing required voltage for current emission from spacecraft.  
VPS is the voltage of the on-board power supply, referenced to spacecraft frame, used to 

accelerate the ions. VSC is the spacecraft voltage referenced to the space plasma (taken to be 
zero). 
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surface to a positive potential and electrostatically repelling ions from this surface into space.  If 
the vehicle is negatively charged at a potential -VSC referenced to space, then ions must be 

repelled from a surface maintained at voltage VPS (referenced to spacecraft frame), where VPS 
must be greater than |-VSC|. This is illustrated schematically in  
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Figure 1-3.  Schematic showing required voltage for current emission from spacecraft.  
VPS is the voltage of the on-board power supply, referenced to spacecraft frame, used to 

accelerate the ions. VSC is the spacecraft voltage referenced to the space plasma (taken to be 
zero). 

 

While VPS is greater than |-VSC| ions are emitted with sufficient kinetic energy to 

be able to escape the spacecraft, the net current to the spacecraft is not zero, and the 

charge state (potential) of the vehicle will change.  Once the spacecraft reaches a 

potential where VSC = -VPS, the emitted ions have insufficient energy to escape the 

spacecraft (they can’t climb the potential hill) and the current is returned.  In this case the 

net current is again zero and the spacecraft charge state will remain stable.  This is 

demonstrated in Figure 1-4. 
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Figure 7.3: Schematic showing required voltage for
current emission from spacecraft. VPS is the voltage
of the on-board power supply, referenced to space-
craft frame, used to accelerate the ions. VSC is the
spacecraft voltage referenced to the space plasma
(taken to be zero).

While VPS is greater than | − VSC| ions are
emitted with sufficient kinetic energy to be able
to escape the spacecraft, the net current to
the spacecraft is not zero, and the charge state
(potential) of the vehicle will change. Once
the spacecraft reaches a potential where VSC =
−VPS, the emitted ions have insufficient energy
to escape the spacecraft (they cant climb the
potential hill) and the current is returned. In
this case the net current is again zero and the
spacecraft charge state will remain stable. This
is demonstrated in Figure 7.4

The spacecraft potential will thus stabilize at
VSC = −VPS. At this increased negative po-
tential, the vehicle will attract a larger amount
of ion plasma current from the environment.
If the increased ion current from the plasma
reaches the spacecraft, the vehicle potential will
increase slightly (become more positive), allow-
ing some of the emitted ion current to escape
the vehicle and restore the potential to the more
negative value. Thus the emitted ion current,
Ie, must be at least as large as the environmen-
tal ion current, Ienviron, to maintain the vehi-
cle at the steady state potential. If Ie were less
than Ienviron, the vehicle power supply would be
insufficient to maintain the spacecraft potential
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Figure 1-4.  Vehicle potential will stabilize when VSC reaches the value of –VPS.  The 
energy of the emitted current is no longer sufficient to escape the vehicle and the net current is 

zero. 

 

The spacecraft potential will thus stabilize at VSC = -VPS.  At this increased 

negative potential, the vehicle will attract a larger amount of ion plasma current from the 

environment. If the increased ion current from the plasma reaches the spacecraft, the 

vehicle potential will increase slightly (become more positive), allowing some of the 

emitted ion current to escape the vehicle and restore the potential to the more negative 

value.  Thus the emitted ion current, Ie, must be at least as large as the environmental ion 

current, Ienviron, to maintain the vehicle at the steady state potential.  If Ie were less than 

Ienviron, the vehicle power supply would be insufficient to maintain the spacecraft potential 

at VSC = -VPS.  The above discussion could easily be extended to include electron 

emission raising the vehicle potential to some positive value. 

 

The ideal case, presented in Figures XXX and XXX, describes how to actively 

force a spacecraft potential to some desired value.  This is accomplished by accelerating a 

beam of charges into space through a voltage difference equal to the desired final 

spacecraft potential.  If the current in the beam is greater than the current reaching the 

spacecraft from the ambient plasma, then the vehicle potential will reach a value equal to 

the emission voltage and will passively stabilize at that value as long as the emission 

continues. 

 

1.4. Spacecraft-Plasma Interaction 

 

In order to actively charge a spacecraft, the emission control current must be 

greater than the current to the spacecraft from the ambient plasma.  It is thus instructive 
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1.3. Active Charge Control 

 

As discussed in Section 1, an isolated spacecraft will assume an equilibrium charge state 
such that the net environmental current due to plasma and photoelectron emission is zero. It is 

possible to change the net vehicle charge by emitting current from the spacecraft.  For example, if 
it is desired to drive the spacecraft charge more negative the emission of positive charge from the 
vehicle will cause a net surplus of on-board electrons and a lowering of the potential.  In order to 

emit such a current, the charges must be ejected with sufficient kinetic energy to escape the 
potential well created by the vehicle in space.  This is accomplished by biasing an accelerator 

surface to a positive potential and electrostatically repelling ions from this surface into space.  If 
the vehicle is negatively charged at a potential -VSC referenced to space, then ions must be 

repelled from a surface maintained at voltage VPS (referenced to spacecraft frame), where VPS 
must be greater than |-VSC|. This is illustrated schematically in  
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Figure 1-3.  Schematic showing required voltage for current emission from spacecraft.  
VPS is the voltage of the on-board power supply, referenced to spacecraft frame, used to 

accelerate the ions. VSC is the spacecraft voltage referenced to the space plasma (taken to be 
zero). 

 

While VPS is greater than |-VSC| ions are emitted with sufficient kinetic energy to 

be able to escape the spacecraft, the net current to the spacecraft is not zero, and the 

charge state (potential) of the vehicle will change.  Once the spacecraft reaches a 

potential where VSC = -VPS, the emitted ions have insufficient energy to escape the 

spacecraft (they can’t climb the potential hill) and the current is returned.  In this case the 

net current is again zero and the spacecraft charge state will remain stable.  This is 

demonstrated in Figure 1-4. 
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Figure 7.4: Vehicle potential will stabilize when
VSC reaches the value of VPS. The energy of the
emitted current is no longer sufficient to escape the
vehicle and the net current is zero.

at VSC = −VPS. The above discussion could
easily be extended to include electron emission
raising the vehicle potential to some positive
value.

The ideal case, presented in Figures 7.3 and
7.4, describes how to actively force a spacecraft
potential to some desired value. This is accom-
plished by accelerating a beam of charges into
space through a voltage difference equal to the
desired final spacecraft potential. If the current
in the beam is greater than the current reaching
the spacecraft from the ambient plasma, then
the vehicle potential will reach a value equal to
the emission voltage and will passively stabilize
at that value as long as the emission continues.

7.1.4 Spacecraft-Plasma Interaction

In order to actively charge a spacecraft, the
emission control current must be greater than
the current to the spacecraft from the ambi-
ent plasma. It is thus instructive to analyze
the magnitude of the ambient plasma current to
the vehicle. A spacecraft in ambient plasma be-
haves like an isolated probe (Langmuir Probe),
repelling or collecting free charges depending
upon the vehicle potential. The current-voltage

characteristic of a spacecraft is shown in Fig-
ure 7.5. In region 1, when the spacecraft has a
large negative potential, almost all the plasma
electrons are repelled and the current to the ve-
hicle is dominated by plasma ions. This ion
current is termed ion saturation current. As
the potential of the vehicle is increased, the ion
current is reduced because of electrostatic re-
pulsion and a greater number of electrons are
able to reach the spacecraft as a result of their
kinetic energy. Thus region 2 represents the
regime in which both ions and electrons are par-
tially repelled/attracted. At a certain negative
potential known as the floating potential, or Vf ,
the partially repelled electron current will bal-
ance with the partially attracted ion current,
resulting in a zero net current to the vehicle.
This floating potential is the value that a space-
craft would assume in equilibrium and is given
by (for VSC < 0)

Vf = −kTe

e
ln

[√
Timi

Teme

(
1− eVSC

kTi

)]
(7.1)

For a plasma consisting of protons and electrons
at approximately the same temperatures,

Vf = −2.5
kTe

e
(7.2)

The spacecraft floating potential is thus on the
order of, and scales proportionally with, the
electron temperature.

Region 3 represents the case where the vehi-
cle potential is highly positive. In this regime,
all of the plasma ions are electrostatically re-
pelled from the vehicle and contribute no cur-
rent, while all of the plasma electrons are at-
tracted. This electron current is termed elec-
tron saturation current.

Considering a simple spherical geometry for
the spacecraft, the entire J-V characteristic of
the vehicle within a space plasma can be given
as an expression for the plasma current density,
Jp, as a function of spacecraft potential, VSC in
two parts. If VSC < 0, then

Jp = Je0e
−e|VSC|

kTe − Ji0

(
1 +

e|VSC|
kTi

)
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ambient plasma behaves like an isolated probe (Langmuir Probe), repelling or collecting 

free charges depending upon the vehicle potential.  The current-voltage characteristic of a 

spacecraft is shown in Figure 1-5. In region 1, when the spacecraft has a large negative 

potential, almost all the plasma electrons are repelled and the current to the vehicle is 

dominated by plasma ions.  This ion current is termed ion saturation current.  As the 

potential of the vehicle is increased, the ion current is reduced because of electrostatic 

repulsion and a greater number of electrons are able to reach the spacecraft as a result of 

their kinetic energy.  Thus region 2 represents the regime in which both ions and 

electrons are partially repelled/attracted.  At a certain negative potential known as the 

floating potential, or Vf, the partially repelled electron current will balance with the 

partially attracted ion current, resulting in a zero net current to the vehicle.  This floating 

potential is the value that a spacecraft would assume in equilibrium and is given by (for 

VSC<0) 
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For a plasma consisting of protons and electrons at approximately the same temperatures,  
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The spacecraft floating potential is thus on the order of, and scales proportionally with, 

the electron temperature.   

Region 3 represents the case where the vehicle potential is highly positive.  In this 

regime, all of the plasma ions are electrostatically repelled from the vehicle and 

contribute no current, while all of the plasma electrons are attracted.  This electron 

current is termed electron saturation current. 
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Figure 7.5: . J Vs V Graph for Spacecraft. J is current density (A/m2) and V is spacecraft potential with
respect to space plasma.

If VSC > 0, then

Jp = Je0

(
1 +

eVsc

kTe

)
− Ji0e

−eVsc
kTi

where Je0 and Ji0 are the electron and ion sat-
uration current densities, respectively, and are
given by

Je0 = ene

√
kTe

2πme

Ji0 = −eni

√
kTi

2πmi

where e is electron charge in C, ni(e) is ion (elec-
tron) density in m−3, k is Boltzmann constant
in J/K, Ti(e) is ion/electron temperature and
mi/e is the mass of an ion (electron) measured
in kg. For average plasma conditions outside
of the plasmapause, such as those given in Ta-
ble 2.2, the electron and ion saturation currents
are on the order of 10−6 A/m2.

In addition to the plasma current to the vehi-
cle, light absorption results in emission of pho-
toelectrons during the day. The flux of elec-
tron emission is proportional to the flux of ab-
sorbed photons. For the sake of simplicity we

assume that the emitted photoelectrons follow
a Maxwellian velocity distribution character-
ized by an average temperature of Tpe. When
the spacecraft potential is negative, all of the
photoelectrons are repelled and emitted into
space. When the spacecraft is positive, some
of the photoelectrons will be attracted back to
the vehicle and the emitted current will be re-
duced. The photoelectron current density is for
VSC < 0

Jpe = Jpe0 = constant

and for VSC > 0

Jpe = Jpe0e
−eVSC
kTpe

(
1 +

eVSC

kTpe

)
Where Tpe is temperature of photoelectrons.
The photoelectric current constant, Jpe0, is de-
pendent upon material properties and can vary
widely, however typical values are on the order
of the plasma electron saturation current.

The total current density to the vehicle can
then be given by the sum of electron plasma
current, ion plasma current and photoelectron
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current as follows. If VSC ≤ 0 then

Jp = Je0e
−e|VSC|

kTe − Ji0

(
1 +

e|VSC|
kTi

)
− Jpe0

and if VSC > 0, then

Jp = Je0

(
1 +

eVSC

kTe

)
− Ji0e

−eVSC
kTi

− Jpe0e
−eVSC
kTpe

(
1 +

eVSC

kTpe

)

7.2 Review of Active Charging
Technology

The mission most directly relevant to the con-
cept discussed here is the SCATHA flight ex-
periment. The SCATHA satellite was launched
in January, 1979 with the goal of measuring the
build-up and breakdown of charge on various
spacecraft components and to characterize the
natural environment at GEO altitudes.7 The
satellite potential with respect to space plasma
potential was monitored on the SCATHA craft.
During passive operation of the satellite, the
spacecraft potential was seen to vary from near
ground to many kilovolts negative. This natu-
ral charging is in agreement with the phenom-
ena as discussed in Chapter 2. One goal of
the SCATHA mission was to test the validity
of actively controlling the spacecraft potential
by emitting charge through an electron beam.
To this end, an electron gun was used to trans-
fer charge from SCATHA to the space plasma
at various current and voltage levels up to 13
mA and 3 kV.47

During experiments with the electron emis-
sion system, a very important result, as re-
ported by Gussenhoven, et al., was that, “the
electron beam can achieve large, steady-state
changes in the vehicle potential and the re-
turning ambient plasma.”48 In fact, Gussen-
hoven found that when a 3 kV electron beam
was operated, “the satellite became positively
charged toa value approaching beam energy for
0.10 mA” emission current. Similarly, Cohen,
et al. report that “spacecraft frame and sur-
faces on the spacecraft went positive with respect

to points 50 meters from the satellite when the
gun was operated. Depending upon ejected elec-
tron currents and energies, spacecraft frame-
to-ambient-plasma potential differences between
several volts and 3 kV were generated.”49 These
findings support the concept of beam-induced
charging as presented in Figures 7.1 and 7.2.

More recent missions employing active space-
craft potential control have focused on avoiding
spacecraft charging entirely, rather than pur-
posely charging the vehicle as in the SCATHA
experiment. For instance, the international
space station (ISS) is equipped with a number
of so-called plasma contactors. These devices
emit a continuous stream of ions and electrons
into the space plasma. The stream of charged
particles serves as an electrical ground between
the ISS frame and the space plasma, ensuring
that the station does not achieve large potential
differences from the surrounding environment.
This mitigates discharge issues from the 160-
volt ISS electrical power system and differential
charging along the very large structure.

A number of recent magnetospheric map-
ping missions have utilized active spacecraft
charge control to avoid corrupting data ob-
tained from on-board instruments designed to
characterize the surrounding plasma. For in-
stance, if a spacecraft is charged negative with
respect to the space plasma, then free electrons
reaching on-board detectors will have been de-
celerated from their undisturbed values, while
ions will have been accelerated. It is then of
great interest to maintain the spacecraft po-
tential as close as possible to that of the sur-
rounding plasma to obtain accurate character-
ization of the magnetospheric conditions. Mis-
sions showing the feasibility of active charge
control include INTERBALL-2,50 Equator-S,51

Geotail,52 and Cluster-II.53,54

7.3 Attributes of Coulomb
Charge Actuators

7.3.1 Ion/Electron Emission Sources

A variety of technology options exist for

90



the type of high-energy ion and electron emis-
sion sources required for a Coulomb-controlled
spacecraft. Each vehicle in a Coulomb forma-
tion will likely require both an ion and electron
source, to enable positive and negative charging
as desired. The electron source will be a rela-
tively straightforward subsystem. The most at-
tractive candidate is some type of field-emission
source, so that active heating of a thermionic
emitter is not required. The necessary beam
currents of tens to hundreds of micro-Amps will
not be a challenge, as multiple emitter tips can
be employed in parallel to easily satisfy the
emission requirement.

Although employed for a different goal, the
ion emission system utilized on INTERBALL-
2, Equator-S, Geotail, and Cluster-II spacecraft
would likely be compatible with the concept ex-
plored in this work. In these existing systems,
the ion emitter is a solid-needle type liquid-
metal ion source using indium as the emission
species. A solid needle made of tungsten, with
a tip radius between 2 and 5 µm, is mounted
in a reservoir with the indium. The reservoir
is heated to melt the indium. A potential of
5 to 8 kV is applied between the needle and
an extractor electrode. Since the needle is well
wetted by the indium, the electrostatic stress at
the needle tip pulls the liquid metal towards the
extractor electrode. This stress is counteracted
by the surface-tension forces of the liquid. The
equilibrium configuration assumed by the liquid
surface is that of a Taylor cone. The field evapo-
ration of positively charged metal atoms in the
strong apex field of the Taylor cone leads to
emission of a high-brightness external ion beam.
The technology is well developed on an indus-
trial basis.53,55

Single tips, as used in the INTERBALL-2 in-
strument, can produce currents of several tens
of µA. The mass efficiency is high. One gram of
indium suffices for about 10,000 hours of con-
tinuous operation at 10 to 15 µA.50 For the type
of potential control examined in this study, the
beam current from a single tip would not be suf-
ficient. It would be straightforward, however, to
fabricate an emission system with multiple tips
to produce the required current for spacecraft

charge control.

7.3.2 Required Power

Basic concepts can be used to calculate the
power required to maintain the spacecraft at
some steady state potential. To maintain the
spacecraft at a voltage of |VSC|, current must be
emitted in the amount of |Ie| = 4πr2|Jp|, where
Jp is the current density to the vehicle from the
plasma, using a power supply having voltage of
at least |VPS| = |VSC|. Quantitatively,

P = |VSCIe| (7.3)

For a two-spacecraft formation with each vehi-
cle using Power P , the total system power is
just the sum of the individual power to each
vehicle. Assuming spherical spacecraft and us-
ing Gauss Law to relate the surface potential
to the encircled point charge, it is possible to
relate the Coulomb force (thrust) on a vehicle
to the emission current and the required power

Fc = 4πε0e−d/λd
rArBP

2

d2IeAIeB
(7.4)

where rA(B) and IeA(B) are the radius and emis-
sion current of spacecraft A(B), and d is the
vehicle separation.

Eqn. (7.4) yields the power required to pro-
duce a steady-state thrust for a given emission
current. Since the space environment will be
constantly changing (and, hence the emission
current to maintain steady state), it is impor-
tant to calculate the required power to affect a
change in potential from some initial value to a
desired steady state value. In the pedagogical
analysis here, the capacitance of the spherical
spacecraft can be used to estimate the power
required for a change in voltage (thrust). Using
an equivalent circuit model where dVSC

dt = I
C ,

the rate of change of spacecraft potential can be
related to the current absorbed from the plasma
and the emitted control current

dVSC

dt
=

4πr2Jp + Ie
4πε0r

(7.5)

where Jp is the absorbed plasma current den-
sity. The value of Jp can easily be evaluated us-
ing traditional plasma probe theory for a sphere
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and will take the form Jp = Jp(VSC, Te, Ti).
If Vfinal is the desired steady state spacecraft
voltage, then the emission current power sup-
ply must have power P = IeVfinal. Substituting
Ie = P/Vfinal into Eqn. (7.5) and using an an-
alytic form for the plasma current, an explicit
equation is obtained of the form

dVSC

dt
= f(P, VSC, Te, Ti, r) (7.6)

which can be numerically integrated to produce
a function

VSC = VSC(Te, Ti, r, P, t) (7.7)

As a numerical example, Figure 7.6 shows
a plot of the function obtained for Eqn. (7.7)
assuming a 1-m-diameter spacecraft charging
from VSC = 0 to Vfinal =6 kV in the average
GEO plasma environment. From this plot it
is evident that only 200 mW of power is re-
quired to change the spacecraft potential by 6
kV within 8 msec.
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Figure 7.6: Numerical integration of the transient
response of a 1-m-diameter model spacecraft in an
average GEO plasma as a function of the power in
the emitted control beam.

7.3.3 Mass Flow Rate and Isp

Mass flow rate is defined by the rate of
gaseous ions expelled per unit time to maintain

potential of the vehicle. As electrons have neg-
ligible mass we can say that the mass flow rate
of electrons is zero and thus driving the poten-
tial positive requires zero mass flow. If Ie is the
emission current constituting ions, mion is the
mass of ion, and qion is the charge, then the ion
mass flow rate is given by

ṁ =
Iemion

qion
(7.8)

For a two spacecraft combination, propellant
mass flow rate will be the sum of mass flow rates
for individual spacecraft and can be related to
their individual emission currents

ṁtotal =
mion

qion
(Ieq + IeB) (7.9)

A common performance parameter used for
propulsion systems is specific impulse Isp. This
parameter compares the thrust derived from a
system to the required propellant mass flow
rate. Although Isp is traditionally used as
a parameter to evaluate momentum transfer
(rocket) systems, we can use the formal defi-
nition to compare the Coulomb system. For a
Coulomb control system the specific impulse Isp
is given by

Isp =
F

ṁTotalg0
(7.10)

Since Coulomb force calculations are meaning-
less for a single vehicle, we will treat the system
as two separate vehicles, each subject to a force
of Fc given by Eqn. (7.4), so that the sum of
the forces experienced by all spacecraft in the
formation is F = 2Fc.

Isp =
8πε0e−d/λdqion

gomion

rArBP
2

d2IeAIeB(IeA + IeB)
(7.11)

Where g0 is the gravitational constant ( 9.81
m/s2). If rA = rB = rsc, and Ie = IeA = IeB,
then Eqn. (7.11) becomes,

Isp =
4πε0e−d/λdqionr

2
scP

2

g0miond2I3
e

(7.12)
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Note that, unlike a rocket system, the defini-
tion of Isp of a Coulomb system is meaning-
less for a single vehicle. For a formation of two
spacecraft, Eqn. (7.12) indicates that the spe-
cific impulse of the formation is a function of the
radii of the spacecraft, power supplied to the ion
(electron) gun, the separation between the two
spacecraft, the emission currents of both vehi-
cles, and the mass of the charge carriers, mion.

Consider a two-spacecraft formation with
identical 1-m-diameter vehicles in the average
GEO plasma environment charged to the same
negative potential. In order to reach and main-
tain this negative potential, the vehicles must
emit an ion current. Consequently, the space-
craft will attract ion saturation current from
the plasma, so Ie must be equal to the plasma
ion saturation current for steady state. Calcu-
lated values of specific impulse for each vehicle
in the formation is shown in Figure 7.7 for var-
ious system input power levels. The emitted
species is taken to be H+; the data can be ex-
tended to any emitted species by dividing the
Isp value from the figure by the desired atomic
mass. For 1 mW systems with vehicle sepa-
ration on the order of 20 m, Isp values of 104
seconds are obtained, with values increasing to
1010 sec for just 1 W of power. It should be
noted that for a positive vehicle potential the
emitted species would be electrons and, thus,
the calculated values of Isp would be a factor of
2,000 greater.

7.3.4 Emission Current Jet Force

Generating net charge on a spacecraft for
Coulomb force requires the emission of current.
Because the charge is carried away from the
vehicle by particles with non-zero mass, such
mass ejection results in a momentum jet force
on the vehicle as in a traditional electric propul-
sion thruster. In the case of electron emission,
the mass of the charge carriers is insignificant
and the resulting jet force is negligible. Ion
emission, however, may produce a significant
reaction force. It is instructive to consider how
the Coulomb force between spacecraft compares
with the momentum reaction on the vehicle in-
duced by the beam of ion current.
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Figure 7.7: Specific impulse for a two-spacecraft
Coulomb formation as a function of spacecraft sep-
aration, d, and input power, P .

The reactive thrust force of an ejected mass
flow is computed as

Fj = ṁue (7.13)

where ṁ is the ejected mass flow rate and ue

is the exhaust velocity at which the mass is
emitted. Assuming steady state Coulomb force
generation, the ions will be electrostatically ac-
celerated through a spacecraft potential of VSC,
such that

ue =
√

2qionVSC

mion
(7.14)

With this simplification and recognizing that
the mass flow is related to the emission current,
the momentum jet force of the emitted ion cur-
rent is

Fj = Ie

√
2mionVSC

qion
(7.15)

The jet force can also be written in terms of the
input power to the emission system as

Fj =

√
2mionPIe
qion

(7.16)

We can compare the magnitude of the jet re-
action force with the induced Coulomb force
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between two vehicles. Assume identical space-
craft charged to the same value of VSC. From
Eqn. (7.4) and Eqn. (7.16) we can write the ra-
tio of FC/FJ (taking FC as the total Coulomb
force on both vehicles) in terms of the input
power as

FC

Fj
= 4

√
2πε0

√
qion

mion

rArBP
3/2e−d/λd

IeAIeB(IeA + IeB)d2

(7.17)

If rA = rB = rsc, and Ie = IeA = IeB then
Eqn. (7.17) becomes,

FC

Fj
= 2

√
2πε0

√
qion

mion

r2scP
3/2e−d/λd

I3
ed

2
(7.18)

Similar to the calculations for specific im-
pulse, if we consider a formation of two identical
spacecraft in GEO having the same diameter of
1 m, charged to the same high negative voltage
VSC and provided with same power P , they will
each draw ion saturation current from the am-
bient plasma. So the (ion) emission current Ie
will be also the same. Figure 7.8 shows the ra-
tio of Coulomb to jet force assuming hydrogen
ion emission in average GEO plasma.
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Figure 7.8: Comparison between induced Coulomb
force and the momentum reaction of the emitted
ion beam used to maintain the spacecraft charge for
three power levels.

It can be seen from Figure 7.8 that for sepa-
rations up to 100 m and system power greater

than 1 mW the Coulomb force is considerably
higher than the jet force. This implies two con-
clusions: 1) the Coulomb force is a wiser use of
power than a mass-emitting ion thruster, and 2)
the directional jet force will not be a significant
perturbation to the Coulomb control system

7.4 Attributes of Coulomb
Charge Sensors

Emission of charged particle beams can be
used to change the spacecraft charge state. To
implement this actuator in an active control
system, a means to sense the spacecraft charge
is necessary. Past missions utilized long (up
to 50 m) booms extended into the surround-
ing space to sense the ambient plasma poten-
tial, which the vehicle potential was then mea-
sured against. The long booms were necessary
to obtain a plasma potential measurement that
was outside of the region in space influenced by
the charged spacecraft. In these missions, the
quantity of interest was the spacecraft voltage
with respect to the surrounding plasma. As an
example the SCATHA spacecraft is shown in
Figure 7.9 and the INTERBALL-2 vehicle is
shown in Figure 7.10. On these vehicles the
tips of the probes are electrically isolated from
the spacecraft and are, presumably, in electrical
contact with the undisturbed space plasma po-
tential. The vehicle potential is then measured
referenced to the probe tip voltage.

For the work investigated here, the value
of spacecraft voltage referenced to undisturbed
plasma potential is not critical. Instead, what
is of interest is the total net charge of the ve-
hicle. It is the net charge that determines the
Coulomb interaction with surrounding charged
vehicles. It should be possible to measure this
net charge without the use of long probes ex-
tending into space. The method identified in
the present work to sense spacecraft net charge
relies on short differential voltage probes and
Gauss Law.

The familiar Gauss Law relates the electric
field distribution on the perimeter of a closed
surface with the net charge enclosed by the sur-
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Figure 7.9: Schematic of SCATHA spacecraft. Electrically isolated probes were located at the tips of 50-m
booms.47

 

Figure 7.10: The antenna and DC electric field probe configuration of INTERBALL-2.50

face. In integral form, the law is expressed as∮
E · dA =

q

ε0

where dA is an element of surface area and q is
the total encircled electric charge. For a simple
spherical spacecraft, it is possible to measure
the value of the radial electric field at a single
point on the spacecraft surface and use Gauss
Law to determine the amount of charge con-
tained in the spacecraft. For this geometry the
integral becomes simply∮

E · dA = 4πr2E
∣∣∣
r

=
q

ε0

and the net vehicle charge is determined by

q = 4πr2ε0E
∣∣∣
r

For a representative spacecraft with radius 1
m charged to kilovolt potentials, this implies a
radial electric field at the spacecraft surface of
1,000 V/m.

Because of the spherical symmetry, the ra-
dial electric field for this simple case could
be measured in a straightforward manner us-
ing two isolated electric probes separated by
some radial distance ∆r. If the impedance be-
tween each probe and spacecraft frame is large
enough, the probes will float to the local value
of electric potential. The radial field can be ob-
tained by taking the voltage difference between
the probes divided by the separation, ∆r. Such
a technique to measure DC electric fields is com-
monly used and has, in fact, been employed
in space on-board the Fast Auroral Snapshot
(FAST) spacecraft, where isolated probes were
used to measure the DC electric field in the
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Earths auroral region.56 On the FAST mis-
sion, it was possible to resolve very weak ambi-
ent magnetospheric electric fields. The typical
Coulomb-actuator-induced radial field of 1,000
V/m would manifest as an easily measurable
voltage difference of 100 V between two probes
separated by 10 cm. A schematic of this is
shown in Figure 7.11. This concept assumes
that the ambient plasma Debye length is large
compared to the spacecraft, such that the elec-
tric field created by the charged vehicle is not
shielded by the plasma until an appreciable dis-
tance from the craft.
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Figure 7.11: Concept of using differential voltage
probes to measure the electric field surrounding a
spacecraft. For this simple spherical geometry, a
single differential probe can provide the information
necessary to solve Gauss Law for the net spacecraft
charge.

Since spacecraft are, of course, not likely to
be spherical, actual implementation of the pro-
posed technique would require real-world mod-
ifications. In principle the technique would be
identical. The difference arises from the more
complicated geometry of the control surface and

the need to measure the electric field at a num-
ber of points around the vehicle to obtain a suf-
ficiently accurate approximation to the surface
integral in Gauss Law. It is possible that even
complex vehicle geometries could be accommo-
dated through extensive characterization and
finite-element modeling of the geometry.

 

 
Electric equipotential 
surfaces 

Array of differential 
voltage probes 

Figure 7.12: Real spacecraft would require an ar-
ray of differential voltage probes and finite-element
vehicle characterization to provide an adequate ap-
proximation to the surface integral in Gauss Law.
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Chapter 8

Performance Comparison of Coulomb
Propulsion vs. Conventional Electric
Thrusters

8.1 Performance Metrics

The purpose of this section is to compare
the method of Coulomb thrusting to that of
more conventional propulsion systems. Since
the missions under consideration in this study
typically utilize micro-Newton-level forces for
formation-keeping and repositioning, the con-
ventional thrusters that are relevant are micro
electric propulsion (EP) devices. The figures of
merit for EP devices are specific impulse (Isp),
power (P ), and thrust (T ).

Specific impulse is a measure of “fuel effi-
ciency” for a thruster. By definition, specific
impulse is the total impulse delivered by the
thruster divided by the mass of propellant re-
quired to deliver the impulse:

Isp =
Tτ

Mpropg
(8.1)

where T is the maneuver-averaged thrust and τ
is the time required to perform the maneuver.
The factor g (the acceleration due to gravity
at Earths surface) is included as a constant of
convenience – its purpose is to ensure that Isp is
expressed in seconds regardless of unit system
chosen. Rearranging, specific impulse can be
written in its more familiar form:

Isp
T

ṁg
(8.2)

where ṁ is the mass-flow rate of propellant con-
sumption. Realizing that the thrust force is

T = ṁujet, where ujet is the velocity of the
particles expelled from the thruster, specific im-
pulse can be related to the jet velocity by:

Isp =
ujet

g
(8.3)

Thus, the specific impulse is a direct measure of
the effective jet exhaust velocity – its numerical
value (in seconds) is roughly 1/10th the exhaust
velocity (in m/s).

For any kinetic (rocket) propulsion system, a
fundamental relation exists between the figures-
of-merit. The relation can be derived by re-
alizing that the rate of momentum emission
(thrust) from the jet is given by T = ṁujet while
the rate of energy emission (power) from the jet
is P = 1

2ṁu
2
jet. Dividing thrust by power and

utilizing the definition of specific impulse,

T =
2P
gIsp

(8.4)

In EP devices, the jet power is derived from
some on-board electrical source (batteries or so-
lar arrays). There is some conversion efficiency
between the electrical power supplied, Psup, and
the power that is deposited into kinetic energy
of the jet, Psup. Expressing the device efficiency
as

η =
P

Psup
(8.5)

97



the relation between performance metrics can
finally be written as

T =
2ηPsup

gIsp
(8.6)

It is important to realize that this relation
only holds true for kinetic (rocket) propulsion
systems. Because the Coulomb thrusting sys-
tem analyzed here is not a kinetic system, the
above relation does not apply. It is, however,
possible to calculate effective specific impulse
and power quantities for Coulomb systems to
facilitate direct comparison with EP devices.
These quantities are derived fully in Section 7.3.

8.2 Conventional Electric
Thrusters

For the types of missions considered in this
study, there are three EP systems of suffi-
cient maturity to warrant comparison. The
first of these is a micro-pulsed plasma thruster
(µPPT). The µPPT is essentially an electro-
magnetic accelerator, which uses solid Teflon
bars as propellant. It is a pulsed thruster with
characteristically very short pulse width of the
order of tens of microseconds. In principle, it
can be throttled using pulse-width-modulation
(although it is typically not operated in this
mode). The minimum amount of impulse that
can be imparted to a spacecraft in one pulse
(the impulse bit) can be as small as 2 µNewton-
seconds. µPPTs can be characterized by Isp =
500 sec and η = 2.6%.57,58 With a power range
of a few to a few tens of Watts, the thrust range
is 10 – 100 µN.

The second candidate EP device is the colloid
thruster. A colloid thruster extracts charged
droplets (and/or free ions) from an electrolytic
liquid using strong electric fields in a manner
not unlike that of an inkjet printer nozzle. Com-
mon examples of propellant mixtures include
combinations of formamide or glycerol as sol-
vents and sodium iodide (NaI) or lithium chlo-
ride (LiCl) as solutes. Colloid thruster per-
formance can be characterized by Isp = 1,000
sec and efficiency η = 65%.57 By changing the

number of needle-tip emitters in a single device,
thrust has been demonstrated from 1 µN to sev-
eral mN.

The third EP technology is the Field-emission
electric propulsion (FEEP) device. Similar to
the colloid thruster, the FEEP device extracts
charged particles from a liquid propellant. The
difference is in the propellant used and operat-
ing voltage range. Instead of electrolytic fluid,
FEEP uses liquid phase metal, like cesium or in-
dium because of their low ionization potential,
high atomic weight and low melting point. Ions
are directly extracted by field emission and sub-
sequently accelerated down the electric poten-
tial. In order to overcome the ionization poten-
tial they need to be operated at higher voltages
than the colloid thrusters. The FEEP technol-
ogy can be characterized with performance pa-
rameters of Isp = 10,000 sec and efficiency η =
65%.57 Power ranges from 10−5 W for a single
emitter up to a few W for clustered emitters.

Another important figure of merit for EP de-
vices is the power-specific mass. This parame-
ter characterizes the inert mass of the required
power processing hardware to convert the on-
board electrical power to the form required for
the EP device. It can include voltage ampli-
fication, current regulation, and pulse-forming.
The parameter is usually given by the symbol
β and is expressed in units of kg/W. The three
candidate EP devices are summarized in Ta-
ble 8.1.

8.3 Modeling Coulomb
Performance

It is possible to calculate representative
propulsive figures of merit for Coulomb thrust-
ing maneuvers such as those presented in Chap-
ters 5 and 6. To facilitate comparison with EP
devices, the goal is to calculate the mass flow
and power required to perform a given thrust
history using Coulomb propulsion. These pa-
rameters can then be used to derive the effec-
tive specific impulse of the Coulomb maneuver
along with the power required for charge control
of the participating vehicles.
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Table 8.1: Typical performance statistics of EP devices capable of performing the missions analyzed in this
study.

Device Power (W) Thrust (µN) Isp (s) Efficiency β (kg/W)

µPPT 1–10 10–100 500 2.6% 0.37
Colloid 10−3 – 10 1 – 1,000 1,000 65% 0.27
FEEP 10−3 0.01 – 100 10,000 65% 0.11

The model described here uses as inputs the
force vs. time and charge vs. time histories
from simulations in Chapter 5 and 6. The
spacecraft potential is related to the vehicle net
charge according to

VSC =
q

4πε0r
(8.7)

where q is the spacecraft charge and r is the ve-
hicle radius (assuming spherical spacecraft). As
discussed in Chapter 7, in order to maintain a
vehicle at a steady potential, VSC, the Coulomb
emission system must be capable of ejecting a
beam of current with potential V and magni-
tude equal to the current arriving at the space-
craft from the ambient plasma. The ambient
plasma current as a function of spacecraft volt-
age is shown in Figure 7.5. For the model dis-
cussed here this I−V characteristic is simplified
to ease calculations and provide a worst-case
value of plasma current. The simplified space-
craft I − V characteristic due to the plasma is
given as:

Jp =

VSC ≤ 0 Jp = −Ji0

(
1 + e|VSC|

kTi

)
Jp = VSC > 0 Je0

(
1 + e|VSC|

kTe

)
(8.8)

Graphically, such an I−V characteristic would
look as shown in Figure 8.1. The assumed char-
acteristic does two things: (1) ignores the tran-
sition region between electron and ion satura-
tion currents and, instead, models the plasma
current as either electron saturation or ion sat-
uration current, and (2) ignores the effect of
photoelectron emission. The first property has
the effect of introducing a plasma current that is
greater than the actual current for voltages less

than the plasma electron temperature, while
the second property assumes away the photo-
electron current, avoiding the need to specify
spacecraft material properties and sun angles.

I

V

Ji0

Je0

Figure 8.1: Simplified I−V characteristic for space
plasma current to vehicle.

To maintain a steady-state spacecraft voltage
of VSC, the charge emission system must then
emit a beam, with energy eVSC and magnitude
given by

Ie = 4πr2Jp (8.9)

The power required to supply this beam is

P = Ie|VSC| (8.10)

as discussed in Chapter 7. For the maneuvers
considered in Chapters 5 and 6, the spacecraft
voltage (net charge) is not steady and, instead,
changes in time to affect the desired trajectory.
The required beam emission current can be ad-
justed in a straightforward manner to account
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Table 8.2: 2-vehicle repositioning maneuvers used to evaluate propulsive performance of Coulomb thrusting.

Case Vehicle 1 Vehicle 2 Vehicle 1 Vehicle 2 Separation Maneuver
Name Mass (kg) Mass (kg) Radius (m) Radius (m) Goal (m) Time (h)

2-1-12 50 50 0.5 0.5 12 1
2-1-22 50 50 0.5 0.5 22 1
2-3-12 50 50 0.5 0.5 12 3
2-3-22 50 50 0.5 0.5 22 3
G-1-25 50 1000 0.5 10 25 1
G-1-35 50 1000 0.5 10 35 1

for the change in vehicle charge. If, at time t,
the vehicle potential is VSCand the net charge is
changing at a rate of dq/dt, the required beam
emission current is simply

Je = 4πr2Jp +
dq
dt

(8.11)

The spacecraft must emit (1) enough charge to
cancel the current from the ambient plasma,
and (2) enough charge to cause the vehicles net
charge to change according to the proscribed
charge vs. time history specified for the ma-
neuver. At time t the power is still given by
P = Ie|VSC|, however the emission current now
contains two terms.

The mass flow rate required to control the
vehicles charge can be calculated based on the
emission current. If the charge vs. time maneu-
ver requires the emission system to eject nega-
tive charge (either maintain a positive vehicle
potential or increase the instantaneous poten-
tial), then the required mass flow is zero be-
cause this can be accomplished using an elec-
tron beam. However, if the maneuver requires
the emission of positive charges then atomic
ions must be emitted resulting in a finite sys-
tem mass flow. For a required positive charge
emission current of Ie, the resulting mass flow
is

ṁ =
Iemion

e
(8.12)

where mion is the mass (kg) of the emitted
species and we have assumed that all atoms are
singly ionized.

8.4 Representative Mission
Analysis

Two representative maneuvers using
Coulomb thrusting were analyzed to cal-
culate propulsive figures-of-merit. In the first
maneuver, two identical spacecraft with 0.5-m
radii are initially located 2 m apart. Coulomb
thrusting is used to deploy the spacecraft to
a new separation distance and to halt the de-
ployment once the spacecraft reach the desired
state (see Section 6.1.3). The second maneuver
considered was similar, with the exception that
the vehicles are not identical. In the second
case, one of the vehicles had radius of 10 m
(so-called gluon vehicle) while the second had
radius of 0.5 m. The initial separation between
spacecraft was 15 m. Both maneuver time
and final separation distance were varied. The
representative missions profiles are tabulated
in Table 8.2.

The input to the performance models were
the charge vs. time and force vs. time histories
computed in Section 6.1.3 These parameters
were used along with the modeling equations
of Section 8.3 to calculate power history, mass
flow, and specific impulse. Sample input files
for maneuver 2-1-12 are shown in Figures 8.2(a)
and 8.2(b).

Based on the vehicle radius and the required
charge, the vehicle potential can be derived and
is plotted in Figure 8.3(a). Given the space-
craft potential, the simplified I − V charac-
teristic of Section 8.3 is used to calculate the
required emission current from the Coulomb
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Figure 8.2: Maneuver 2-1-12 Illustration

charge actuator. The emission current is plot-
ted in Figure 8.3(b) and the sign convention is
taken that positive charge emission from the ve-
hicle equates to positive emission current.

With the current and voltage requirements
of the Coulomb actuator known, the time his-
tory of actuator power can be calculated ac-
cording to the methods in Section 7.3; this his-
tory is shown in Figure 8.4(a). The required
propellant mass is obtained from the emission
current. While negative emission current (ejec-
tion of electrons) requires zero mass flow, the
emission of positive current requires ion ejec-
tion. Based on the success of the charge actu-
ator used on the Cluster mission54 the analysis
here assumes indium will be the charge-carrying
species. The actuator mass-flow-rate is shown
in Figure 8.4(b). The mass flow rate can be
integrated in time to calculate the total mass
required for the maneuver, while the force vs.
time history can supply the total maneuver im-

-15x10
3

-10

-5

0

5

10

15

V
e
h
ic

le
 P

o
te

n
ti

a
l 
(V

)

3000200010000

Time (s)  

(a) Spacecraft Voltage

-4x10
-6

-2

0

2

E
m

is
s
io

n
 c

u
rr

e
n
t 

(A
)

3000200010000

Time (s)  

(b) Ion Emission

Figure 8.3: Voltage and Ion Emission for Case 2-
1-12

pulse. With these parameters known, the ef-
fective specific impulse of maneuver 2-1-12 is
calculated to be 3.08 · 108 seconds.

Similar analyses were performed for all cases
shown in Table 8.2. Since maneuver profiles
were similar, the trends in current, power, and
mass flow are similar for all cases. The propul-
sive performance metrics are summarized in Ta-
ble 8.3. Here, the values of effective specific
impulse and peak power (max power required
during maneuver) are reported.

8.5 Concluding Remarks

In comparing Table 8.1 with Table 8.3 it is ap-
parent that the Coulomb actuators have specific
impulse at least two orders of magnitude greater
than competing electric thrusters. For all ma-
neuvers with the exception of the gluon cases,
the required beam power is only a few tens of
mW for Coulomb control. The largest emis-
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Figure 8.4: Coulomb Thrusting Performance for Case 2-1-12

Table 8.3: Summary of propulsive figures-of-merit for representative Coulomb repositioning maneuvers.

Case Vehicle 1 Vehicle 2 Vehicle 1 Vehicle 2
Name Peak Peak Specific Specific

Power(W) Power (W) Impulse (s) Impulse (s)

2-1-12 56 · 10−3 56 · 10−3 3.08 · 108 3.08 · 108

2-1-22 50 · 10−3 50 · 10−3 1.4 · 1010 1.4 · 1010

2-3-12 7.4 · 10−3 7.4 · 10−3 6.5 · 107 6.5 · 107

2-3-22 42 · 10−3 42 · 10−3 9.8 · 107 9.8 · 107

G-1-25 4.7 · 10−3 17.9 · 10−3 6.02 · 108 Inf (zero mass flow)
G-1-35 154 · 10−3 60 · 10−3 7.2 · 108 Inf (zero mass flow)

sion current and, hence, the greatest mass flow,
is demanded during spacecraft polarity change
when it is desired to change the net charge from
positive to negative in a very short time. Com-
pare the charge vs. time history of Figure 8.2(a)
with the emission current (Figure 8.3(b)) and
the corresponding mass flow (Figure 8.4(b)).
The fast polarity switching requires a relatively
large burst of emission current. Maneuvers that
did not require sudden polarity change would
thus be expected to have an even higher effec-
tive specific impulse.

The gluon cases of G-1-25 and G-1-35 show
an interesting behavior involving spacecraft
scaling. As the vehicle radius (rSC) is increased,
the vehicle potential required to obtain the de-
sired net charge decreases by the relation

VSC =
q

4πε0rSC
(8.13)

Thus, it seems intuitive that the emitted beam
power (emission current multiplied by vehicle
potential) would be less for larger vehicles. This
is not the case, however. As the vehicle radius
becomes larger and the surface area grows ac-
cording to r2SC, the current from the ambient
plasma, given by 4πr2SC, increases. While the
required beam voltage decreases as 1/rSC, the
required beam current to overcome the ambi-
ent plasma current increases by r2SC, so the net
effect is that required actuator power increases
linearly with vehicle size. It is noted, however,
that even the 5-m-radius gluon considered here
only required an actuator power of 60 W for the
most demanding maneuver.

A more difficult parameter to characterize is
the total inert mass required of a Coulomb ac-
tuator system. To arrive at a meaningful value,
it is necessary to know the power-specific mass
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of the Coulomb actuation system. As in an EP
system, this mass would include such compo-
nents as amplifiers, filters, and pulse-forming
devices. Some insight is possible by analyzing
the Cluster active charge controller that has
been successfully flown.54 In this device, the
beam emission system was, essentially, an in-
dium FEEP electric thruster. It is reasonable
to assume, then, that the power-specific mass
for a Coulomb actuator would be similar to
that of the FEEP technology at β=0.11 kg/W.
While it would be presumptuous to calculate
inert mass numbers based on such approxima-
tions, it is justified to say that the inert mass of
a Coulomb actuator would be no greater than
that of a competing EP thruster of the same
power. Moreover, since the Coulomb system re-
quires far less power than a kinetic EP device of
the same thrust, the inert mass of a Coulomb
actuator would be less than a competing EP
thruster. Coupled with the greatly increased
specific impulse, which results in a correspond-
ing decrease in propellant mass, the Coulomb
control system promises strong benefits over EP
thrusters
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Chapter 10

Concluding Remarks

10.1 Conclusion

This report discusses the results of an 8-month
inter-disciplinary research project between Vir-
ginia Polytechnic Institute and State University
and Aerophysics Inc. The important findings
of the plasma environment study are that the
plasma Debye length is on the order of 0.01–0.03
meters at low Earth orbit. This strong electric
field masking parameter makes the Coulomb
thrusting concept infeasible at this low altitude
with a cold, dense space plasma. At higher
altitudes the Van Allen radiation belts are of
concern. The data here shows that the Debye
length is still only 0.03–0.26 meters, too small
for practical use with Coulomb thrusting. Be-
yond 5-6 Earth radii outward to geostationary
altitudes the Debye length is found to vary be-
tween 100–1000 meters. The rest of the research
focused on mission flying in high Earth orbits
outside of the Van Allen radiation belts. At
these altitude the dominant differential orbital
perturbation is differential solar radiation pres-
sure. This is true for spacecraft separation dis-
tances outward to 1000 meters. Conservative
estimates show that flying spacecraft about 20
meters apart at GEO would require multiple
kilovolts to compensate, assuming a 50kg craft
with 0.5 meter radius. Further, considering the
Earth magnetic field, for the induced Lorentz
force to be comparable to differential solar ra-
diation pressure, the craft would have to charge
up to multiple mega-volt levels. The expected
open-loop maintenance charge level studies are
conducted for a classical formation of space-
craft, as well as a gluon-deputy formation con-

cept. Here the gluon craft size is enlarged to
be able to carry a higher charge level. Flying
20–30 meters apart, these voltages are around
10’s of kilovolt.

A study is performed to investigate voltage
requirements to perform static Coulomb struc-
tures. Here the electrostatic force cancel the
relative orbital acceleration to yield an invari-
ant formation shape as seen by the rotating
center of mass frame. An important finding is
that it is possible to construct virtual structures
where sensor craft are in a desired geometry
(e.g. distributed radar interferometry), while
other charged craft in this virtual structure are
in a support role to help maintain the shape.

The important findings of the deployment
study include numerical simulations of deputy
craft being released from a mother craft using
rest-to-rest or rest-to-motion scenarios. The
simulations use closed-loop charge control to
achieve the final position and/or velocities. Us-
ing essentially no fuel, this study shows that
deputy craft can be relocated dozens of meters
using 10’s of kilovolt levels of charge. Maneuver
times are typically several hours.

Another study investigated the required max-
imum charge level to change the separation dis-
tance of two inertially floating spacecraft within
a specified amount of time. An important re-
sult of this research was finding a robust nu-
merical optimization method to find such solu-
tions. The inverse square drop off of the elec-
trostatic field strength causes strong sensitivity
issues with larger separation distance. Homo-
topy methods were employed to sweep through
a range of separation distance, travel times, and

105



plasma Debye lengths. To reconfigure 2 craft
from 2 to 25 meters in a few hours requires 1–
10’s of kilovolts.

A related study investigates a closed-loop
charge control of a 2-craft nadir pointing forma-
tion at GEO. Here the gravity gradient torque
acting on the system is exploited to stabilize the
formation attitude while changing the length.
Important findings include analytical predic-
tions of fast the craft can increase or decrease
their separation distance while still guarantee-
ing linear stability of the non-autonomous sys-
tem. Maneuver times are typically around 1–2
days to allow the weak local gravity gradient to
stabilize the in-orbit-plane formation attitude.

The charge control study found a promising
method servo the spacecraft voltage level. An
array of small differential voltage probes are
added to the vehicle which can measure the elec-
tric potential. Having a model of the vehicle
geometry and materials, it is then possible to
estimate the total vehicle potential. Further, to
achieve this potential, a simple ion or electron
gun is used. An important conclusion is that
this process is insensitive to plasma potential
variations. The local variations of space plasma
between spacecraft is minimal due to the small
separation distances. Thus, it is only necessary
to control the spacecraft charge relative to the
plasma. This is a substantial simplification to
the charge control process on the CLUSTERS
mission.

Finally, the mass and power comparison
study shows that the Coulomb thrusting con-
cept is orders of magnitudes more efficient than
ion-engine technologies, and often requires as
little as 1 Watt of power or less. In fact, the
total electrical power requirement for Coulomb
thrusting are determined not by the propulsion
method needs itself, but rather by the power
requirements of the supporting electronics and
thermal control.
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Figure 10.1: Illustration the inter-spacecraft elec-
trostatic force being used to dock 2 spacecraft in a
nadir pointing formation.

10.2 Implications for Further
Research

10.2.1 Docking Operations

A very promising use of Coulomb thrusting is
docking and proximity flying operations. Dock-
ing in particular is a very challenging operation
that requires significant fuel amounts to per-
form the many small orbit corrections. Con-
sider the scenario where one craft is approach-
ing another. If the approach speed is too large,
a thruster is conventionally used to slow the rel-
ative motion. However, for optimal fuel efficient
maneuvering, the thruster would be firing the
same direction as the target craft. The result-
ing exhaust plume could damage the other ve-
hicle, or even push it away. Instead, the control
thruster must be angled away from the target
craft. Here some of the thrusting components
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Figure 10.2: Illustration of a Coulomb docking vehicle being guiding into the docking mechanism of a
target craft using Coulomb forces.

will mutually cancel each other, while only a
fraction of the thrusting is used to achieve the
desired slow down.

Using a Coulomb force to control the rela-
tive motion avoids the plume impingement is-
sue, while the required fuel requirements would
be near zero. One docking concept envisions
using a nadir-pointing docking approach. The
chaser craft maneuvers above the target craft
and arrests its relative motion. Without fur-
ther control, such a nadir-pointing 2-craft for-
mation is unstable and will drift apart. How-
ever, by engaging the Coulomb thrusting mech-
anisms between the two craft it is possible to
stabilize the in-plane relative motion. The elec-
trostatic force is used to directly regulate the
separation distance as illustrated in Figure 10.1.
Note that each craft is charged to a common
voltage level. No differential charging is used in
this approach. By employing a nadir-pointing
docking approach, the 2 craft with a regulated
separation distance behave similar to a slen-
der rigid body in orbit. The gravity gradi-
ent torque acting on the formation is exploited
here to stabilize the in-plane orientation simul-
taneously as the separation distance is regu-
lated. The out-of-plane motion linearly decou-

ples from the other two degrees of freedom. To
zero any such out-of-plane relative motion, this
concept employs traditional thrusters firing in
the orbit normal direction. Plume impingement
issues are avoided because the craft formation
is nadir-pointing. This scenario provides an ele-
gant docking approach solution which uses min-
imal amounts of fuel and allows for well con-
trolled separation distance control.

Another docking concept employing Coulomb
forces is illustrated in Figure 10.2. The target
craft is equipped with several charging surfaces
which can be servoed to different voltage lev-
els. The connecting rods are made out electri-
cally isolating material to avoid charge leakage.
This setup allows for general three-dimensional
electrostatic fields to be projected ahead of the
docking mechanism. By charging up the chaser
craft to a fixed voltage level, a general three-
dimensional force vector is created between the
craft. Note that this is a conceptual differ-
ence to the nadir-align approach strategy where
only a force vector along the spacecraft cen-
ter of masses can be produced. The chaser
craft can now be carefully pulled in towards
the target craft docking mechanisms. Conven-
tional thrusting is only employed here to estab-
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lish the chaser craft within a particular parking
box ahead of the chaser craft. The target craft
is assumed to have its own station keeping and
attitude control capability.

10.2.2 Swarm Deployment

Another are of future research is the use of
Coulomb thrusting to deploy a swarm of small
satellites. For example, pico-satellites only have
about 200-500 grams of mass. Such small craft
cannot carry very much fuel onboard, if any, to
perform orbit corrections. If a mechanical de-
ployment mechanism is used, then the ejected
spacecraft velocity is determined at the time
or release. Any launch errors in heading or
speed cannot be corrected release. However, if
the deployed craft is charged to a fixed value,
and the mother craft has several charge surfaces
similar to the general docking concept, then
the deployed craft trajectory can be controlled
and corrected for dozens of meters after release.
This concept is illustrated in Figure 10.3. A
cluster of small satellites could be deployed very
precisely using such a system.

10.2.3 Virtual Sensing Structure
About Other Spacecraft

The virtual Coulomb structure concept employs
a number of charge-controlled satellites whose
control law makes them act as a single rigid
structure. The original concept was born out of
the discovery of relative equilibria solutions of
the charged relative equations of motion. Such
structures could replace solid structures and
provide substantial mass savings and a very ad-
justable and robust formation shape.

A future research area of virtual Coulomb
structures is to deploy a series of small probe
satellites about another satellite to sense for
damage. Flying craft in close proximity (dozens
of meters) is always a very challenging under-
taking because of the collision potential and the
thruster plume impingement issues. However,
being able to place sensor probes this close to
another craft would allow for sophisticated re-
mote diagnostic operations to be performed on
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Figure 10.3: Illustration of a Swarm of Small
Spacecraft Being Deployed from a Mother Craft us-
ing Coulomb Forces

another satellite without direct contact. Us-
ing the virtual Coulomb structure concept, the
deployed charged craft would be parked in a
natural relative equilibria constellation about
the target craft. Using conventional formation
or proximity flying it is impossible to keep a
satellite slightly below another craft at all times
without continually thrusting. The different or-
bit periods would cause the satellite to quickly
drift apart. With the static Coulomb structure
research candidate formation solutions are be-
ing identified where it is possible to have one
satellite remain in a lower orbit. As a result it
would be able to remotely diagnose Earth point-
ing sensors or the target craft. While such so-
lutions require a continuous charge control to
be available, the extremely fuel and power ef-
ficient nature of this concept the traditionally
high fuel costs of such non-Keplerian formation
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considerations.
Even though it might be possible to build

space structures 100’s of meters in size in the
future, deploying such a structure about a
target craft will be a nearly impossible chal-
lenge. With the modular Coulomb structure
concept, the craft would be deployed about the
mother craft using electrostatic forces and ex-
ploiting the naturally occurring orbital dynam-
ics. Because the structure concept is deter-
mined through feedback control laws, it is pos-
sible to change the sensor location, or the struc-
ture size, shape and stiffness, over as as the mis-
sion requirements change.
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